Enhancing BLDC Motor Performance with Wheel-Hub Design by Modify Coil Configurations

Authors

  • Rifki Dwi Putranto Electrical Engineering Study Program, Telkom University, Surabaya Campus, East Java, 60231
  • Isa Hafidz Electrical Engineering Study Program, Telkom University, Surabaya Campus, East Java, 60231
  • Henko Kholima Electrical Engineering Study Program, Telkom University, Surabaya Campus, East Java, 60231
  • Nur Wahyuni Putri Electrical Engineering Study Program, Telkom University, Surabaya Campus, East Java, 60231

DOI:

https://doi.org/10.23960/jemit.359

Keywords:

Motor LDC, konstruksi roda-hub, konfigurasi winding, efisiensi motor, torsi dan kecepatan.

Abstract

This paper presents an analysis of the design method of a BLDC (Brushless DC) motor with a wheel-hub structure. This study examines how variations in winding configuration affect motor performance. A 650W wheel-hub BLDC motor will be tested by modifying its stator design, including variations in the number of wires, the number of parallel circuits, and the diameter of its conductor. The test focuses on the effect of these changes on the torque, efficiency, output power and rotational speed of the motor.The test was carried out using standard sized wires. The results show that appropriate winding arrangements can increase motor torque and speed. When the parallel circuit configuration is used, the motor efficiency increases and the wire diameter is optimized. Based on the design implementation carried out, the 650W hub-type BLDC motor tested was able to achieve a maximum power of 956W, a maximum speed of 477 rpm, and a maximum torque of 41 Nm. In addition, the highest efficiency achieved was 86% at a torque of 31.8 Nm, a speed of 239 rpm, and a power of 956W.The results of this study emphasize the importance of proper winding configuration in optimizing motor performance. This winding configuration selection procedure is expected to be a reference in the manufacture of wheel-hub BLDC motors.

Downloads

Download data is not yet available.

References

Gecer, B., Ozturk Tosun, H., Apaydin, H., & Oyman Serteller, N. F. (2021). Comparative analysis of SRM, BLDC and induction motor using ANSYS/Maxwell. International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2021). https://doi.org/10.1109/ICECCME52200.2021.9591010

Gururaj, B., & Gowri, K. S. (2019). Performance optimization of an ECAR by parametric analysis (Vol. 9). www.etasr.com

Haghighat, A. K., Roumi, S., Madani, N., Bahmanpour, D., & Olsen, M. G. (2018). An intelligent cooling system and control model for improved engine thermal management. Applied Thermal Engineering, 128, 253-263. https://doi.org/10.1016/j.applthermaleng.2017.08.102

Harbintoro, S., Balai Besar Logam dan Mesin, & Kementerian Perindustrian. (2020). Pembuatan inti stator motor listrik dengan menggunakan proses milling profil [Electric motor stator core making using profile milling process] (Vol. 14).

Kurniawan, R. M. A., Nauri, I. M., & Kusuma, F. I. (n.d.). Pengaruh lap winding dan wave winding dengan kawat tembaga Hellenic terhadap kecepatan dan torsi motor power window Toyota Avanza.

Lou, G., Ma, H., Fan, T., & Chan, H. K. (2020). Impact of the dual-credit policy on improvements in fuel economy and the production of internal combustion engine vehicles. Resources, Conservation and Recycling, 156. https://doi.org/10.1016/j.resconrec.2020.104712

Mohanraj, D., Aruldavid, R., Verma, R., Sathiyasekar, K., Barnawi, A. B., Chokkalingam, B., & Mihet-Popa, L. (2022). A review of BLDC motor: State of art, advanced control techniques, and applications. IEEE Access, 10, 54833-54869.

Pal, K. (2021). Design and analysis of permanent magnet brushless DC motor (Vol. 10).

Rani, S., & Jayapragash, R. (2024). Review on electric mobility: Trends, challenges and opportunities. Results in Engineering, 23.

Saed, N., Leitner, S., Krall, F., & Muetze, A. (2022). Noise and vibration characteristics of sub-fractional horsepower single-phase BLDC drives. Elektrotechnik und Informationstechnik, 139(2), 260-270. https://doi.org/10.1007/s00502-022-01012-5

Saiteja, P., Ashok, B., Mason, B., & Kumar, P. S. (2024). Assessment of adaptive self-learning-based BLDC motor energy management controller in electric vehicles under real-world driving conditions for performance characteristics. IEEE Access, 12, 40325-40349. https://doi.org/10.1109/ACCESS.2024.3375753

Samsul Ma, E., Dermawan, E., & Chamdareno, P. G. (n.d.). Studi perencanaan pengaturan kecepatan motor BLDC pada gerobak listrik dengan driver Votol EM-30S. Jurnal XYZ, 5(2).

Shen, J. X., & Tseng, K. J. (2003). Analyses and compensation of rotor position detection error in sensorless PM brushless DC motor drives. IEEE Transactions on Energy Conversion, 18(1), 87-93. https://doi.org/10.1109/TEC.2002.808339

Shi, Z., Sun, X., Cai, Y., Tian, X., & Chen, L. (2020). Design optimisation of an outer-rotor permanent magnet synchronous hub motor for a low-speed campus patrol EV. IET Electric Power Applications, 14(11), 2193-2201. https://doi.org/10.1049/iet-epa.2020.0130

Smolka, K., Firych-Nowacka, A., & Wiak, S. (2022). Comparison of the design of 3-pole BLDC actuators/motors with a rotor based on a single permanent magnet. Sensors, 22(10). https://doi.org/10.3390/s22103759

Sun, X., Shi, Z., Cai, Y., Lei, G., Guo, Y., & Zhu, J. (2020). Driving-cycle-oriented design optimization of a permanent magnet hub motor drive system for a four-wheel-drive electric vehicle. IEEE Transactions on Transportation Electrification, 6(3), 1115-1125. https://doi.org/10.1109/TTE.2020.3009396

Veza, I., Asy’ari, M. Z., Idris, M., Epin, V., Fattah, I. M. R., & Spraggon, M. (2023). Electric vehicle (EV) and driving towards sustainability: Comparison between EV, HEV, PHEV, and ICE vehicles to achieve net zero emissions by 2050 from EV. Alexandria Engineering Journal, 82, 459-467. https://doi.org/10.1016/j.aej.2023.10.020

Yang, L., Zhu, Z. Q., Hong Bin, Z., Zhang, Z., & Gong, L. (2020). Safety operation area of zero-crossing detection-based sensorless high-speed BLDC motor drives. IEEE Transactions on Industry Applications, 56(6), 6456-6466. https://doi.org/10.1109/TIA.2020.3012594

Zhao, Q., Huang, S., Wang, T., Yu, Y., Wang, Y., Li, Y., & Gao, W. (2025). The influencing factors and future development of energy consumption and carbon emissions in urban households: A review of China’s experience. Applied Sciences, 15(6).

Zheng, X., He, L., He, X., Zhang, S., Cao, Y., Hao, J., & Wu, Y. (2022). Real-time black carbon emissions from light-duty passenger vehicles using a portable emissions measurement system. Engineering.

Downloads

Published

2025-08-31

How to Cite

Putranto, R. D. ., Hafidz, I. ., Kholima, H. ., & Putri, N. W. . (2025). Enhancing BLDC Motor Performance with Wheel-Hub Design by Modify Coil Configurations. Journal of Energy, Material, and Instrumentation Technology, 6(3), 166–173. https://doi.org/10.23960/jemit.359