Sustainable Lithium Battery Development in Indonesia: The Role of Natural Materials and Recycling Processes in Future Challenges

Authors

  • Chaironi Latif Electrical Engineering Study Program, Telkom University, Surabaya Campus, East Java, 60231
  • Mohammad Fahmi Ilmi Yogianto Electrical Engineering Study Program, Telkom University, Surabaya Campus, East Java, 60231
  • Isa Hafidz Electrical Engineering Study Program, Telkom University, Surabaya Campus, East Java, 60231
  • Ahmad Fauzan Adziimaa Graduate School of Science and Technology, Kumamoto University

DOI:

https://doi.org/10.23960/jemit.347

Keywords:

Indonesia, Lithium Battery, Natural Materials, Recycling, Sustainable Development

Abstract

The development of sustainable lithium-ion batteries is essential to meet the global demand for efficient, high-capacity, and environmentally friendly energy storage systems. This study reviews recent advancements in lithium battery technologies in Indonesia, emphasizing the utilization and performance of locally available natural materials. Among various lithium-ion battery types, those based on Lithium Nickel Manganese Cobalt Oxide (NMC) and Lithium Iron Phosphate (LFP) are considered the most promising for Indonesia due to the availability of key raw materials such as nickel, cobalt, and iron. Additionally, various battery recycling techniques—including pyrometallurgy, hydrometallurgy, bio-hydrometallurgy, and direct recycling methods—are systematically analyzed for their effectiveness in material recovery and environmental impact mitigation. The findings highlight the need for integrated strategies that combine local material utilization, innovation in battery materials and recycling technologies, environmental stewardship, and supportive regulatory frameworks to accelerate the development of a sustainable lithium-ion battery ecosystem in Indonesia.

Downloads

Download data is not yet available.

References

Abdallah, T., Farhat, A., Diabat, A., & Kennedy, S. (2012). Green supply chains with carbon trading and environmental sourcing: Formulation and life cycle assessment. Applied Mathematical Modelling, 36(9), 4271–4285. https://doi.org/10.1016/j.apm.2011.11.056

Aflaki, S., Basher, S. A., & Masini, A. (2021). Technology-push, demand-pull and endogenous drivers of innovation in the renewable energy industry. Clean Technologies and Environmental Policy, 23(5), 1563–1580. https://doi.org/10.1007/s10098-021-02048-5

Amici, J., Asinari, P., Ayerbe, E., Barboux, P., Bayle-Guillemaud, P., Behm, R. J., Berecibar, M., Berg, E., Bhowmik, A., Bodoardo, S., Castelli, I. E., Cekic-Laskovic, I., Christensen, R., Clark, S., Diehm, R., Dominko, R., Fichtner, M., Franco, A. A., Grimaud, A., … Edström, K. (2022). A roadmap for transforming research to invent the batteries of the future designed within the European Large Scale Research Initiative BATTERY 2030+. Advanced Energy Materials, 12(17), 2202785. https://doi.org/10.1002/aenm.202102785

Angela, R., Islam, H., Sari, V., Latif, C., Zainuri, M., & Pratapa, S. (2017). Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method. AIP Conference Proceedings, 1788(1), 050009. https://doi.org/10.1063/1.4968355

Asadi Dalini, E., Karimi, G., Zandevakili, S., & Goodarzi, M. (2020). A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review, 42(5), 335–356. https://doi.org/10.1080/08827508.2020.1781628

Astuti, F., Maghfirohtuzzoimah, V. L., Intifadhah, S. H., Az-Zahra, P., Arifin, R., Klysubun, W., Zainuri, M., & Darminto. (2021). Local structure and electronic structure of LiFePO4 as a cathode for lithium-ion batteries. Journal of Physics: Conference Series, 1951(1), 012007. https://doi.org/10.1088/1742-6596/1951/1/012007

Astuti, F., Maghfirohtuzzoimah, V. L., Intifadhah, S. H., Az-Zahra, P., Ramadhan, M. R., Zainuri, M., & Darminto. (2023). Study on structure and morphology of silicon-substituted LiFePO4/C doped material. AIP Conference Proceedings, 2604(1), 020003. https://doi.org/10.1063/5.0114693

Barman, P., Dutta, L., & Azzopardi, B. (2022). Electric vehicle battery supply chain and critical materials: A brief survey of state of the art. IET Conference Proceedings, 2022(25), 470–477. https://doi.org/10.1049/icp.2023.0038

Baum, Z. J., Bird, R. E., Yu, X., & Ma, J. (2022). Lithium-ion battery recycling: Overview of techniques and trends. ACS Energy Letters, 7(2), 712–719. https://doi.org/10.1021/acsenergylett.1c02602

Bhattacharya, M., & Goswami, S. (2020). Microalgae: A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology, 25, 101580. https://doi.org/10.1016/j.bcab.2020.101580

Brandt, K. (1994). Historical development of secondary lithium batteries. Solid State Ionics, 69(3–4), 173–183. https://doi.org/10.1016/0167-2738(94)90408-1

Budiono, B., & Virgianita, A. V. A. (2024). Indonesia’s movement to become the main player in the electric vehicle (EV) market in Southeast Asia. Asian Journal of Engineering, Social and Health, 3(4), 866–882. https://doi.org/10.46799/ajesh.v3i4.304

Callegari, D., Coduri, M., Fracchia, M., Ghigna, P., Braglia, L., Anselmi Tamburini, U., & Quartarone, E. (2022). Lithium intercalation mechanisms and critical role of multi-doping in LiFexMn2–x–yTiyO4 as high-capacity cathode material for lithium-ion batteries. Journal of Materials Chemistry C, 10(23), 8994–9008. https://doi.org/10.1039/D2TC00573E

Chen, Y. X., Liu, T. Y., Brahma, S., Huang, J. L., & Liu, C. P. (2024). Promoting stability and fast-charging capability of LiCoO2 thin-film battery achieving 500 Wh/kg energy density through MgO co-sputtering. Materials Today Energy, 40, 101486. https://doi.org/10.1016/j.mtener.2023.101486

Christopher, I., Chime, T. O., Callistus, U., Maxwell, O., Francis, A., Ikechukwu, N. A., Omotioma, M., Benedith, E., Kosoluchi, M., Tina, O., & Scholastica, O. (2025). Examining the efficiency of microbe-assisted metal extraction: A review of bio-hydrometallurgical leaching techniques. Hybrid Advances, 9, 100407. https://doi.org/10.1016/j.hybadv.2025.100407

Dobó, Z., Dinh, T., & Kulcsár, T. (2023). A review on recycling of spent lithium-ion batteries. Energy Reports, 9, 6362–6395. https://doi.org/10.1016/j.egyr.2023.05.264

Du, K., Ang, E. H., Wu, X., & Liu, Y. (2022). Progresses in sustainable recycling technology of spent lithium-ion batteries. Energy and Environmental Materials, 5(4), 1012–1036. https://doi.org/10.1002/eem2.12271

Duan, L., Cui, Y., Li, Q., Wang, J., Man, C., & Wang, X. (2021). Recycling and direct-regeneration of cathode materials from spent ternary lithium-ion batteries by hydrometallurgy: Status quo and recent developments in economic recovery methods for lithium nickel cobalt manganese oxide cathode materials. Johnson Matthey Technology Review, 65(3), 431–452. https://doi.org/10.1595/205651320x15899814766688

Dyartanti, E. R., Setyawati, R. B., & Purwanto, A. (2024). Investigation on the impact of coating thickness setting and calendering on the NMC 811 cathode performances for lithium-ion batteries. Journal of New Materials for Electrochemical Systems, 27(1), 67–75. https://doi.org/10.14447/jnmes.v27i1.a10

Evro, S., Ajumobi, A., Mayon, D., & Tomomewo, O. S. (2024). Navigating battery choices: A comparative study of lithium iron phosphate and nickel manganese cobalt battery technologies. Future Batteries, 4, 100007. https://doi.org/10.1016/j.fub.2024.100007

Fakhrudin, M., Kartini, E., & Zulfia, A. (2024). Improving performance of cathode NMC-811 by CeO2-coating for Li-ion battery. Microelectronic Engineering, 288, 112169. https://doi.org/10.1016/j.mee.2024.112169

Fanani, M. N., Kartini, E., Fakhrudin, M., & Sudjatno, A. (2023). Study of the synthesis NMC-622 cathode active material with oxalate coprecipitation method at different reaction time. AIP Conference Proceedings, 2517(1), 020008. https://doi.org/10.1063/5.0121070

Firdausi, A., Latif, C., Nihlatunnur, Prihandoko, B., Zainuri, M., & Pratapa, S. (2020). Electrical characteristics of natural ironstone-derived LiFe0.99Cu0.01PO4 and LiFe0.98Cu0.02PO4 powders. AIP Conference Proceedings, 2256(1), 020010. https://doi.org/10.1063/5.0015421

Firmanto, A. B., Wibisono, D., Siallagan, M. P. S., & Mubarok, M. Z. (2024). Assessment of Indonesia’s mineral value-added policy: A literature review and future research agenda. International Journal of Management, Entrepreneurship, Social Science and Humanities, 8(1), 16–31. https://doi.org/10.31098/ijmesh.v8i1.2376

Gerold, E., Kadisch, F., Lerchbammer, R., & Antrekowitsch, H. (2024). Bio-metallurgical recovery of lithium, cobalt, and nickel from spent NMC lithium-ion batteries: A comparative analysis of organic acid systems. Journal of Hazardous Materials Advances, 13, 100397. https://doi.org/10.1016/j.hazadv.2023.100397

Habiburrahman, M., Tri Setyoko, A., Nurcahyo, R., Daulay, H., & Natsuda, K. (2025). Circular economy strategy for waste management companies of electric vehicle batteries in Indonesia. International Journal of Productivity and Performance Management, 74(11), 21–45. https://doi.org/10.1108/IJPPM-01-2024-0015

Hamid Nour, A., Mokaizh, A. A. B., Alazaiza, M. Y. D., Bashir, M. J. K., Mustafa, S. E., & Baarimah, A. O. (2024). Innovative strategies for microalgae-based bioproduct extraction in biorefineries: Current trends and future solutions integrating wastewater treatment. Sustainability, 16(23), 10565. https://doi.org/10.3390/su162310565

Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature, 575(7781), 75–86. https://doi.org/10.1038/s41586-019-1682-5

Hasan, M. M., Haque, R., Jahirul, M. I., Rasul, M. G., Fattah, I. M. R., Hassan, N. M. S., & Mofijur, M. (2025). Advancing energy storage: The future trajectory of lithium-ion battery technologies. Journal of Energy Storage, 120, 116511. https://doi.org/10.1016/j.est.2025.116511

Huang, K. J., Ceder, G., & Olivetti, E. A. (2021). Manufacturing scalability implications of materials choice in inorganic solid-state batteries. Joule, 5(3), 564–580. https://doi.org/10.1016/j.joule.2020.12.001

Huang, Y., Dong, Y., Li, S., Lee, J., Wang, C., Zhu, Z., Xue, W., Li, Y., & Li, J. (2021). Lithium manganese spinel cathodes for lithium-ion batteries. Advanced Energy Materials, 11(2), 2000997. https://doi.org/10.1002/aenm.202000997

Ill, B. (2023). The production of high-purity gallium from waste LEDs by combining sulfuric acid digestion, cation-exchange and electrowinning. Journal of Environmental Chemical Engineering, 11(3), 110391. https://doi.org/10.1016/j.jece.2023.110391

Imanishi, N., & Yamamoto, O. (2019). Perspectives and challenges of rechargeable lithium–air batteries. Materials Today Advances, 4, 100031. https://doi.org/10.1016/j.mtadv.2019.100031

Islam, M. T., & Iyer-Raniga, U. (2022). Lithium-ion battery recycling in the circular economy: A review. Recycling, 7(3), 33. https://doi.org/10.3390/recycling7030033

Jenis, P., Zhang, T., Ramasubramanian, B., Lin, S., Rayavarapu, P. R., Yu, J., & Ramakrishna, S. (2024). Recent progress and hurdles in cathode recycling for Li-ion batteries. Circular Economy, 3(2), 100087. https://doi.org/10.1016/j.cec.2024.100087

Jo, H., Kim, B., Ahn, B.-M., Huh, Y., Kim, S., Kim, J. H., Park, H., Park, J.-W., Ha, Y.-C., Song, J. H., Lee, J. I., & Park, J.-H. (2025). High-purity Li6PS5Cl sulfide solid electrolytes via liquid-phase method synthesis for high-performance all-solid-state Li-ion batteries: Particle-scale analysis of formation with precursor and solvent optimization. Chemical Engineering Journal, 522, 166951. https://doi.org/10.1016/j.cej.2025.166951

Jung, J. C. Y., Sui, P. C., & Zhang, J. (2021). A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. Journal of Energy Storage, 35, 102217. https://doi.org/10.1016/j.est.2020.102217

Jung, R., Linsenmann, F., Thomas, R., Wandt, J., Solchenbach, S., Maglia, F., Stinner, C., Tromp, M., & Gasteiger, H. A. (2019). Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells. Journal of The Electrochemical Society, 166(2), A378–A389. https://doi.org/10.1149/2.1151902jes

Jyoti, J., Pratap, B., & Kant, S. (2021). Recent advancements in development of different cathode materials for rechargeable lithium-ion batteries. Journal of Energy Storage, 43, 103112. https://doi.org/10.1016/j.est.2021.103112

Koech, A. K., Mwandila, G., Mulolani, F., & Mwaanga, P. (2024). Lithium-ion battery fundamentals and exploration of cathode materials: A review. South African Journal of Chemical Engineering, 50, 321–339. https://doi.org/10.1016/j.sajce.2024.09.008

Konewka, T., Bednarz, J., & Czuba, T. (2021). Building a competitive advantage for Indonesia in the development of the regional EV battery chain. Energies, 14(21), 1–13. https://doi.org/10.3390/en14217332

Krieger, E. M., Cannarella, J., & Arnold, C. B. (2013). A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy, 60, 492–500. https://doi.org/10.1016/j.energy.2013.08.029

Krustiyati, A., & Gea, G. V. V. (2023). The paradox of downstream mining industry development in Indonesia: Analysis and challenges. Sriwijaya Law Review, 7(2), 335–349. https://doi.org/10.28946/slrev.vol7.iss2.2734.pp335-349

Lahadalia, B., Wijaya, C., Dartanto, T., & Subroto, A. (2024). Nickel downstreaming in Indonesia: Reinventing sustainable industrial policy and developmental state in building the EV industry in ASEAN. JAS (Journal of ASEAN Studies), 12(1), 79–106. https://doi.org/10.21512/jas.v12i1.11128

Lan, Y., Tan, L., Wu, N., Wen, J., Yao, W., Tang, Y., & Cheng, H. M. (2025). Current status and outlook of recycling spent lithium-ion batteries. Journal of Energy Storage, 110, 115374. https://doi.org/10.1016/j.est.2025.115374

Lander, L., Cleaver, T., Rajaeifar, M. A., Nguyen-Tien, V., Elliott, R. J. R., Heidrich, O., Kendrick, E., Edge, J. S., & Offer, G. (2021). Financial viability of electric vehicle lithium-ion battery recycling. iScience, 24(7), 102787. https://doi.org/10.1016/j.isci.2021.102787

Larcher, D., & Tarascon, J. M. (2015). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 7(1), 19–29. https://doi.org/10.1038/nchem.2085

Larouche, F., Tedjar, F., Amouzegar, K., Houlachi, G., Bouchard, P., Demopoulos, G. P., & Zaghib, K. (2020). Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond. Materials, 13(3), 801. https://doi.org/10.3390/ma13030801

Latif, C., Firdausi, A., Nihlatunnur, N., Saiyasombat, C., Klysubun, W., Subhan, A., Zainuri, M., & Pratapa, S. (2022). Synchrotron crystal and local structures, microstructure, and electrical characterization of Cu-doped LiFePO4/C via dissolution method with ironstone as Fe source. Journal of Materials Science: Materials in Electronics, 33(22), 17722–17732. https://doi.org/10.1007/s10854-022-08635-6

Latif, C., Muyasaroh, A. F., Firdausi, A., Mardiana, D., Klysubun, W., Saiyasombat, C., Prihandoko, B., Zainuri, M., & Pratapa, S. (2021). Preparation and characterisation of LiFePO4 ceramic powders via dissolution method. Ceramics International, 47(22), 31877–31885. https://doi.org/10.1016/j.ceramint.2021.08.073

Latif, C., Negara, V. S. I., Wongtepa, W., Thamatkeng, P., Zainuri, M., & Pratapa, S. (2018). Fe K-edge X-ray absorption near-edge spectroscopy (XANES) and X-ray diffraction (XRD) analyses of LiFePO4 and its base materials. Journal of Physics: Conference Series, 985(1), 012021. https://doi.org/10.1088/1742-6596/985/1/012021

Leal, V. M., Ribeiro, J. S., Coelho, E. L. D., & Freitas, M. B. J. G. (2023). Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. Journal of Energy Chemistry, 79, 118–134. https://doi.org/10.1016/j.jechem.2022.08.005

Lim, B., & Alorro, R. D. (2021). Technospheric mining of mine wastes: A review of applications and challenges. Sustainable Chemistry, 2(4), 686–706. https://doi.org/10.3390/suschem2040038

Lo Sardo, C., Cacciatore, G., Cappuccino, G., Aiello, D., & Napoli, A. (2025). Spent lithium battery recycling: Traditional and innovative approaches. Processes, 13(4), 950. https://doi.org/10.3390/pr13040950

Mauger, A., & Julien, C. M. (2018). Olivine positive electrodes for Li-ion batteries: Status and perspectives. Batteries, 4(3), 39. https://doi.org/10.3390/batteries4030039

Moradi, Z., Lanjan, A., Tyagi, R., & Srinivasan, S. (2023). Review on current state, challenges, and potential solutions in solid-state batteries research. Journal of Energy Storage, 73, 109048. https://doi.org/10.1016/j.est.2023.109048

Mubarok, M. W. S. U., & Kartini, E. (2024). Nickel diplomacy: Strengthening Indonesia’s role in global battery and electric vehicles supply chain. AIP Conference Proceedings, 3213(1), 050001. https://doi.org/10.1063/5.0240397

Murdock, B. E., Toghill, K. E., & Tapia-Ruiz, N. (2021). A perspective on the sustainability of cathode materials used in lithium-ion batteries. Advanced Energy Materials, 11(39), 2102028. https://doi.org/10.1002/aenm.202102028

Nkuna, R., Ijoma, G. N., Matambo, T. S., & Chimwani, N. (2022). Accessing metals from low-grade ores and the environmental impact considerations: A review of the perspectives of conventional versus bioleaching strategies. Minerals, 12(5), 506. https://doi.org/10.3390/min12050506

Noerochim, L., Yurwendra, A. O., & Susanti, D. (2016). Effect of carbon coating on the electrochemical performance of LiFePO4/C as cathode materials for aqueous electrolyte lithium-ion battery. Ionics, 22(3), 341–346. https://doi.org/10.1007/s11581-015-1560-6

Olubunmi, B., Chidi, O., Lawrence, A. E., Helena, N. N. K. M., & Tola, O. A. (2024). The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. Global Journal of Engineering and Technology Advances, 19(3), 11–36. https://doi.org/10.30574/gjeta.2024.19.3.0099

Omar, H., Malek, N. S. A., Nurfazianawatie, M. Z., Rosman, N. F., Bunyamin, I., Abdullah, S., Khusaimi, Z., Rusop, M., & Asli, N. A. (2022). A review of synthesis graphene oxide from natural carbon-based coconut waste by Hummer’s method. Materials Today: Proceedings, 75, 188–192. https://doi.org/10.1016/j.matpr.2022.11.427

Pandyaswargo, A. H., Wibowo, A. D., Maghfiroh, M. F. N., Rezqita, A., & Onoda, H. (2021). The emerging electric vehicle and battery industry in Indonesia: Actions around the nickel ore export ban and a SWOT analysis. Batteries, 7(4), 80. https://doi.org/10.3390/batteries7040080

Pirmana, V., Alisjahbana, A. S., Yusuf, A. A., Hoekstra, R., & Tukker, A. (2023). Economic and environmental impact of electric vehicles production in Indonesia. Clean Technologies and Environmental Policy, 25(6), 1871–1885. https://doi.org/10.1007/s10098-023-02475-6

Purwamargapratala, Y., Safitri, J. F., Nursanto, E. B., Jodi, H., Kartini, E., & Zulfia, A. (2023). Effect of ammonia on the synthesis of NMC541 cathode materials with the sol-gel method. Jurnal Sains Materi Indonesia, 24(2), 59–66. https://doi.org/10.55981/jsmi.2023.757

Purwanto, A., Ikhsanudin, M. N., Asri, P. P. P., Giasari, A. S., Hakam, M., Yudha, C. S., Widiyandari, H., Dyartanti, E. R., Jumari, A., & Nur, A. (2024). The optimization of nickel-rich cathode-material production on a pilot plant scale. Processes, 12(4), 685. https://doi.org/10.3390/pr12040685

Rahmawati, M., Yudha, C. S., Aliwarga, H. K. K., Widiyandari, H., Nur, A., & Purwanto, A. (2021). Scaling-up the production process of lithium nickel manganese cobalt oxide (NMC). Materials Science Forum, 1044, 15–23. https://doi.org/10.4028/www.scientific.net/MSF.1044.15

Rai, V., Liu, D., Xia, D., Jayaraman, Y., & Gabriel, J.-C. P. (2021). Electrochemical approaches for the recovery of metals from electronic waste: A critical review. Recycling, 6(3), 53. https://doi.org/10.3390/recycling6030053

Ravi, B., Bhuwalka, K., Moore, E. A., Diersen, I., Malik, R. H., Young, E., Billy, R. G., Stoner, R., Ceder, G., Müller, D. B., Roth, R., & Olivetti, E. A. (2024). Clean energy demand must secure sustainable nickel supply. Joule, 8(11), 2960–2973. https://doi.org/10.1016/j.joule.2024.10.008

Rehman, S., Al-Greer, M., Burn, A. S., Short, M., & Cui, X. (2025). High-volume battery recycling: Technical review of challenges and future directions. Batteries, 11(3), 94. https://doi.org/10.3390/batteries11030094

Reinhart, L., Vrucak, D., Woeste, R., Lucas, H., Rombach, E., Friedrich, B., & Letmathe, P. (2023). Pyrometallurgical recycling of different lithium-ion battery cell systems: Economic and technical analysis. Journal of Cleaner Production, 416, 137834. https://doi.org/10.1016/j.jclepro.2023.137834

Saaid, F. I., Kasim, M. F., Winie, T., Elong, K. A., Azahidi, A., Basri, N. D., Yaakob, M. K., Mastuli, M. S., Amira Shaffee, S. N., Zolkiffly, M. Z., & Mahmood, M. R. (2024). Ni-rich lithium nickel manganese cobalt oxide cathode materials: A review on the synthesis methods and their electrochemical performances. Heliyon, 10(1), e23968. https://doi.org/10.1016/j.heliyon.2023.e23968

Saleem, U., Joshi, B., & Bandyopadhyay, S. (2023). Hydrometallurgical routes to close the loop of electric vehicle (EV) lithium-ion batteries (LIBs) value chain: A review. Journal of Sustainable Metallurgy, 9(3), 950–971. https://doi.org/10.1007/s40831-023-00718-w

Shamsuddin, M. (2021). Physical chemistry of metallurgical processes (2nd ed.). Springer. https://doi.org/10.1007/978-3-030-58069-8

Shan, W., Zhang, H., Hu, C., Zhou, Y., Lam, K. H., Wang, S., & Hou, X. (2021). The cycle performance of high nickel cathode materials significantly enhanced by the LiAlO2@Al2O3 dual-modified coating. Electrochimica Acta, 367, 137216. https://doi.org/10.1016/j.electacta.2020.137216

Srinivasan, S., Shanthakumar, S., & Ashok, B. (2025). Sustainable lithium-ion battery recycling: A review on technologies, regulatory approaches and future trends. Energy Reports, 13, 789–812. https://doi.org/10.1016/j.egyr.2024.12.043

Stallard, J. C., Wheatcroft, L., Booth, S. G., Boston, R., Corr, S. A., De Volder, M. F. L., Inkson, B. J., & Fleck, N. A. (2022). Mechanical properties of cathode materials for lithium-ion batteries. Joule, 6(5), 984–1007. https://doi.org/10.1016/j.joule.2022.04.001

Tang, Y., Qu, X., Zhang, B., Zhao, Y., Xie, H., Zhao, J., Ning, Z., Xing, P., & Yin, H. (2021). Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach. Journal of Cleaner Production, 279, 123633. https://doi.org/10.1016/j.jclepro.2020.123633

Tasneem, O., Tasneem, H., & Xian, X. (2025). Lithium-ion battery technologies for grid-scale renewable energy storage. Next Research, 2(2), 100297. https://doi.org/10.1016/j.nexres.2025.100297

Thompson, D. L. (2023). Recycling of lithium-ion batteries [Data set]. University of Leicester. https://doi.org/10.25392/leicester.data.21960542.v1

Tian, C., Lin, F., & Doeff, M. M. (2018). Electrochemical characteristics of layered transition metal oxide cathode materials for lithium ion batteries: Surface, bulk behavior, and thermal properties. Accounts of Chemical Research, 51(1), 89–96. https://doi.org/10.1021/acs.accounts.7b00520

Veza, I., Abas, M. A., Djamari, D. W., Tamaldin, N., Endrasari, F., Budiman, B. A., Idris, M., Opia, A. C., Juangsa, F. B., & Aziz, M. (2022). Electric vehicles in Malaysia and Indonesia: Opportunities and challenges. Energies, 15(7), 2564. https://doi.org/10.3390/en15072564

Waluyo, H., Waluyo, H., & Noerochim, L. (2014). Pengaruh temperatur hydrothermal terhadap performa elektrokimia LiFePO4 sebagai katoda baterai ion lithium type aqueous elektrolit. Jurnal Teknik ITS, 3(2), F237–F242. http://ejurnal.its.ac.id/index.php/teknik/article/view/6687

Wen, J., Zhao, D., & Zhang, C. (2020). An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renewable Energy, 162, 1629–1648. https://doi.org/10.1016/j.renene.2020.09.055

Windisch-Kern, S., Gerold, E., Nigl, T., Jandric, A., Altendorfer, M., Rutrecht, B., Scherhaufer, S., Raupenstrauch, H., Pomberger, R., Antrekowitsch, H., & Part, F. (2022). Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Waste Management, 138, 125–139. https://doi.org/10.1016/j.wasman.2021.11.038

Xu, J., Cai, X., Cai, S., Shao, Y., Hu, C., & Lu, S. (2023). High-energy lithium-ion batteries: Recent progress and a promising future in applications. Energy & Environmental Materials, 6(1), e12450. https://doi.org/10.1002/eem2.12450

Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A. I., Fawzy, S., Rooney, D. W., & Yap, P. S. (2023). Circular economy strategies for combating climate change and other environmental issues. Environmental Chemistry Letters, 21(1), 55–80. https://doi.org/10.1007/s10311-022-01499-6

Yang, Z., Huang, H., & Lin, F. (2022). Sustainable electric vehicle batteries for a sustainable world: Perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy. Advanced Energy Materials, 12(26), 2200383. https://doi.org/10.1002/aenm.202200383

Yu, X., Li, W., Gupta, V., Gao, H., Tran, D., Sarwar, S., & Chen, Z. (2022). Current challenges in efficient lithium-ion batteries’ recycling: A perspective. Global Challenges, 6(12), 2200099. https://doi.org/10.1002/gch2.202200099

Zanoletti, A., Carena, E., Ferrara, C., & Bontempi, E. (2024). A review of lithium-ion battery recycling: Technologies, sustainability, and open issues. Batteries, 10(1), 16. https://doi.org/10.3390/batteries10010038

Zhang, Y., Gao, Z., Song, N., He, J., & Li, X. (2018). Graphene and its derivatives in lithium–sulfur batteries. Materials Today Energy, 9, 319–335. https://doi.org/10.1016/j.mtener.2018.06.001

Zhang, Z., Zhang, H., Wu, Y., Yan, W., Zhang, J., Zheng, Y., & Qian, L. (2024). Advances in doping strategies for sodium transition metal oxides cathodes: A review. Frontiers in Energy, 18(2), 141–159. https://doi.org/10.1007/s11708-024-0918-8

Downloads

Published

2025-08-31

How to Cite

Latif, C., Yogianto, M. F. I. ., Hafidz, I., & Adziimaa, A. F. . (2025). Sustainable Lithium Battery Development in Indonesia: The Role of Natural Materials and Recycling Processes in Future Challenges. Journal of Energy, Material, and Instrumentation Technology, 6(3), 154–165. https://doi.org/10.23960/jemit.347