Hybrid DFT-ML-MD Approach for Derivation of Lennard-Jones Interatomic Potential Parameters of Al

Authors

  • Artoto Arkundato Fisika, FMIPA, Universitas Jember
  • Widiasih Physics Education, Universitas Terbuka, Indonesia
  • Anak Agung Istri Ratnadewi Ratnadewi Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Jember
  • Khalif Ardian Syah Master’s Student, Department of Electrical Engineering and Information Technology, UGM
  • Yanti Yulianti Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, Indonesia, 35141

DOI:

https://doi.org/10.23960/jemit.v6i2.306

Keywords:

Curve-Fitting, DFT, MD, Machine-Learning, Lennard-Jones Potential

Abstract

Atomistic simulation based on computational physics of methods is used to develop accurate interatomic potentials based on DFT (density functional theory) data. The accuracy of predicting the physical properties of a material is highly dependent on the quality of the interatomic potential used. The purpose of this study is to determine the Lennard-Jones potential parameters of Al metal (epsilon and sigma) from fitting the DFT simulation output data. The use of a “robust” fitting method to reduce the influence of outliers on the potential results is very important and therefore a machine learning method is used to help find the right potential parameters. The method used is a hybrid method using DFT to generate training data, using ML (machine learning) to fit DFT data to the Lennard-Jones (LJ) potential model, and using the MD (molecular dynamics) method to validate the LJ potential parameters. Python-based programming is applied to facilitate how the three methods can be connected. The results of this study are that Al metal has an epsilon value = 0.5000 eV and sigma Al = 3.2072 Å, with a regression coefficient R2 = 0.9441 so that it can be concluded that this study can be said to be quite good and the hybrid method can be further developed to obtain the LJ potential parameter values of various other materials, especially metals.

Downloads

Download data is not yet available.

References

Lennard-Jones, J. E. (1924). On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(738), 441–462. https://doi.org/10.1098/rspa.1924.0086

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review B, 136, 864-871. https://doi.org/10.1103/PhysRev.136.B864

Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133

Plimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp Phys, 117, 1-19.

Iftimie, R., Minary, P., & Tuckerman, M. E. (2005). Ab initio molecular dynamics: Concepts, recent developments, and future trends. Proceedings of the National Academy of Sciences, 102(19), 6654–6659. https://doi.org/10.1073/pnas.0500193102

Giannozzi, P., et al. (2009). Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 21, 395502.

Aravindh, et al. (2007). SixC1-xO2 alloys: A possible route to stabilize carbon-based silica-like solids. Solid State Communications, 144, 273-276. https://doi.org/10.1016/j.ssc.2007.09.011

Giannozzi, P., et al. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter, 29, 46590.

Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng., 18, 015012.

Maulana, A., Arkundato, A., Sutisna, & Trilaksana, H. (2020). Mechanical properties of Fe, Ni, and Fe-Ni alloy: Strength and stiffness of materials using LAMMPS molecular dynamics simulation. In H. Trilaksana, S. W. Harun, C. Shearer, & M. Yasin (Eds.), 2nd International Conference on Physical Instrumentation and Advanced Materials 2019, Article 0034046 (AIP Conference Proceedings; Vol. 2314). American Institute of Physics Inc. https://doi.org/10.1063/5.0034046

Maghfiroh, C. Y., Arkundato, A., Misto, & Maulina, W. (2020). Parameters (epsilon, sigma) of Lennard-Jones for Fe, Ni, Pb for Potential and Cr based on Melting Point Values Using the Molecular Dynamics Method of the LAMMPS Program. Journal of Physics: Conf. Series, 1491, 012022. https://doi.org/10.1088/1742-6596/1491/1/012022

Mardiyah, R. U., Arkundato, A., Misto, & Purwandari, E. (2020). Energy Cohesive Calculation for Some Pure Metals Using the Lennard-Jones Potential in LAMMPS Molecular Dynamics. Journal of Physics: Conf. Series, 1491, 012020. https://doi.org/10.1088/1742-6596/1491/1/012020

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., 't Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp Phys Comm, 271, 10817.

Lenhard, J., Stephan, S., & Hasse, H. (2024). On the History of the Lennard-Jones Potential. Ann. Phys. (Berlin), 536, 2400115. https://doi.org/10.1002/andp.202400115

Stephan, S., & Hasse, H. (2024). On the History of the Lennard-Jones Potential. Annalen der Physik, 536(5), 2400115. https://doi.org/10.1002/andp.202400115

Downloads

Published

2025-06-12

How to Cite

Arkundato, A., Widiasih, Ratnadewi, A. A. I. R., Syah, K. A., & Yulianti, Y. (2025). Hybrid DFT-ML-MD Approach for Derivation of Lennard-Jones Interatomic Potential Parameters of Al. Journal of Energy, Material, and Instrumentation Technology, 6(2), 97–107. https://doi.org/10.23960/jemit.v6i2.306