Identification of Functional Groups of Rapitest Luster Leaf Products for Soil Phosphorus Testing Based on Color Changes using Fourier Transform Infrared Spectroscopy (FTIR)
DOI:
https://doi.org/10.23960/jemit.v5i3.277Keywords:
FTIR, Functional Group, Phosphorus, FTIR, Functional Group, Phosphorus, Rapitest Luster LeafAbstract
Phosphorus is an important nutrient for plants and is useful as the main driver of primary productivity in plants. Periodic soil phosphorus testing is essential to monitor the availability of phosphorus in the soil so that it is not excessive or reduced to achieve maximum productivity. Testing using laboratory methods takes a long time and is expensive. Rapitest Luster Leaf is a soil testing product based on color changes using a colorimetric method of mixing reagents and color indicators that is practical, easy, portable, and can be used directly on agricultural land. Identification of Rapitest functional groups using FTIR is carried out to predict compound content as a renewable material for soil testing. The analysis showed that the functional groups formed include SO42, which occurs at 987, 631, and 602 cm-1 vibration waves. It indicates that the vibration is shifting to the right. At vibrations of 677-573 cm-1, the absorption of the Na2SO4 compound occurs. Sodium sulfate is predicted to be a reagent compound contained in Rapitest. At 811-901 cm-1 and 3524-3209 cm-1 vibration waves, functional group bonds of Mo-O and N-H are formed, respectively. The molecular bonds formed predict that ammonium molybdate is the color indicator compound used.
Downloads
References
Abd El Lateef, E., Selim, M., Abd El-Salam, M. A. E.-S., Nawar, M., Kotb, A. E. A., & Yaseen, A. E. A. (2024). Role of Nutrient Management in Yield, Quality and Nutrient Content of Egyptian Clover (Trifolium alexandrinum L.) Under Calcareous Soil Conditions. Journal of Soil, Plant and Environment, 8–23. https://doi.org/10.56946/jspae.v3i1.371
Akash, M. S. H., & Rehman, K. (2019). Essentials of pharmaceutical analysis. In Essentials of Pharmaceutical Analysis. https://doi.org/10.1007/978-981-15-1547-7
Asriyani, N., Mufti, N., Zulaikah, S., & Abadi, M. T. H. (2022). Fabrication Rapitest Luster Leaf Color Change-Based for Soil pH Measurement: Comparison Study. IOP Conference Series: Earth and Environmental Science, 985(1), 2–10. https://doi.org/10.1088/1755-1315/985/1/012026
Burton, L., Jayachandran, K., & Bhansali, S. (2020). Review—The “Real-Time” Revolution for In situ Soil Nutrient Sensing. Journal of The Electrochemical Society, 167(3), 037569. https://doi.org/10.1149/1945-7111/ab6f5d
Silva, J. C., Oliveira da Silva, L. R., de Sousa Júnior, D. L., Pereira, R. L. da S., de Freitas, T. S., Roque Paulo, C. L., Gonçalves, S. A., Rocha, J. E., Borges, J. A. de O., Coutinho, H. D. M., Freire, P. de T. C., de Sousa, F. F., Saraiva, G. D., Pires de Sá, M. F. C., Pereira Junior, F. N., & da Silva, J. H. (2024). FTIR characterization and microbiological application of polyoxometalates molybdic acid and potassium molybdate against MDR bacteria. Results in Chemistry, 7 (March). https://doi.org/10.1016/j.rechem.2024.101466
Coates, J. (2006). Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 10815–10837. https://doi.org/10.1002/9780470027318.a5606
Dabhade, V. V., Tallapragada, R. M. R., & Trivedi, M. K. (2009). Effect of external energy on atomic, crystalline, and powder characteristics of antimony and bismuth powders. Bulletin of Materials Science, 32(5), 471–479. https://doi.org/10.1007/s12034-009-0070-4
Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, 19(6), 2023–2028. https://doi.org/10.1016/j.scient.2012.10.005
Darela-Filho, J. P., Rammig, A., Fleischer, K., Reichert, T., Lugli, L. F., Quesada, C. A., Hurtarte, L. C. C., De Paula, M. D., & Lapola, D. M. (2024). Reference maps of soil phosphorus for the pan-Amazon region. Earth System Science Data, 16(1), 715–729. https://doi.org/10.5194/essd-16-715-2024
Diaz-Granados, K., Price, R., McBride, J. R., Moffett, D., Kavich, G. M., & Caldwell, J. D. (2024). Identification of Surface Coatings on Central African Wooden Sculptures Using Nano-FTIR Spectroscopy. ACS Photonics. https://doi.org/10.1021/acsphotonics.4c00320
Gong, Y., Chen, X., & Wu, W. (2024). Application of fourier transform infrared (FTIR) spectroscopy in sample preparation: Material characterization and mechanism investigation. Advances in Sample Preparation, 11(April), 100122. https://doi.org/10.1016/j.sampre.2024.100122
James, R. W., & Wood, W. A. (1925). The Crystal Structure of Barytes, Celestine and Anglesite. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 109(598–620).
Khodiev, M. K., Holikulov, U. A., Issaoui, N., Al-dossary, O. M., Bousiakoug, L. G., & Lavrik, N. L. (2023). Estimation of electrostatic and covalent contributions to the enthalpy of H-bond formation in H-complexes of 1, 2, 3-benzotriazole with proton- acceptor molecules by IR spectroscopy and DFT calculations. Journal of King Saud University, 35(102530). https://doi.org/10.1016/j.jksus.2022.102530
Kihara, J., Nziguheba, G., Zingore, S., Coulibaly, A., Esilaba, A., Kabambe, V., Njoroge, S., Palm, C., & Huising, J. (2016). Understanding variability in crop response to fertilizer and amendments in sub-Saharan Africa. Agriculture, Ecosystems and Environment, 229, 1–12. https://doi.org/10.1016/j.agee.2016.05.012
Kinoshita, K. (1990). Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes. Journal of The Electrochemical Society, 137(3), 845–848. https://doi.org/10.1149/1.2086566
Le, D. P. N., Hastings, G., & Gozem, S. (2024). How Aqueous Solvation Impacts the Frequencies and Intensities of Infrared Absorption Bands in Flavin: The Quest for a Suitable Solvent Model. Molecules, 29(520). https://doi.org/10.3390/molecules29020520
Liu, G., & Kazarian, S. G. (2022). Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Royal Society of Chemistry, 147(1777), 1777–1797. https://doi.org/10.1039/d2an00005a
Md Siddique, I. (2024). Exploring Functional Groups and Molecular Structures: A Comprehensive Analysis using FTIR Spectroscopy. Chemistry Research Journal, 2024(2), 70–76.
Mohamed, M. A., Jaafar, J., Ismail, A. F., Othman, M. H. D., & Rahman, M. A. (2017). Fourier Transform Infrared (FTIR) Spectroscopy. In Membrane Characterization. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63776-5.00001-2
Mohammadkhani, M., Noaparast, M., Shafaei, S. Z., Amini, A., Amini, E., & Abdollahi, H. (2011). Double reverse flotation of a very low grade sedimentary phosphate rock, rich in carbonate and silicate. International Journal of Mineral Processing, 100(3–4), 157–165. https://doi.org/10.1016/j.minpro.2011.06.001
Muntwyler, A., Panagos, P., Pfister, S., & Lugato, E. (2024). Assessing the phosphorus cycle in European agricultural soils: Looking beyond current national phosphorus budgets. Science of the Total Environment, 906(June 2023), 167143. https://doi.org/10.1016/j.scitotenv.2023.167143
Mustaqimah, D., Munawar, A. A., & Sufardi, S. (2024). Capability of short Vis-NIR band tandem with machine learning to rapidly predict NPK content in tropical farmland: A case study of Aceh Province agricultural soil dry land, Indonesia. Case Studies in Chemical and Environmental Engineering, 9(April), 100711. https://doi.org/10.1016/j.cscee.2024.100711
Nakamto, K. (1979). Infrared and Raman Spectra of Inorganic and Coordination Compounds. Journal of Chemical Education, 56(5), A209. https://doi.org/10.1021/ed056pa209
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806
Ndegwa, J. K., Gichimu, B. M., Mugwe, J. N., Mucheru-Muna, M., & Njiru, D. M. (2023). Integrated Soil Fertility and Water Management Practices for Enhanced Agricultural Productivity. International Journal of Agronomy. https://doi.org/10.1155/2023/8890794
Pradhan, S. N., Patra, A., & Behera, T. (2020). Phosphorus: An ultimate limiting soil nutrient. May.
Prameena, B., Anbalagan, G., Sangeetha, V., Gunasekaran, S., & Ramkumaar, G. R. (2013). Behaviour of Indian natural baryte mineral. International Journal of ChemTech Research, 5(1), 220–231.
Prati, S., Sciutto, G., Bonacini, I., & Mazzeo, R. (2016). New Frontiers in Application of FTIR Microscopy for Characterization of Cultural Heritage Materials. Topics in Current Chemistry, 374(3), 1–32. https://doi.org/10.1007/s41061-016-0025-3
Rayment, G. E., & Lyons, D. J. (2011). Soil Chemical Method. Csiro Publishing.
Ren, H., Li, Y., Yin, Y., Liu, S., Zhang, J., Zhang, J., Li, P., Wang, Z., & Zhang, P. (2024). Theoretical Study of Molybdenum Separation from Molybdate Assisted by a Terahertz Laser. Molecules, 29(3348). https://doi.org/10.3390/molecules29143348
Rosi, F., Cartechini, L., Sali, D., & Miliani, C. (2019). Recent trends in the application of fourier transform infrared (FT-IR) spectroscopy in Heritage Science: From micro: From non-invasive FT-IR. Physical Sciences Reviews, 4(11), 1–19. https://doi.org/10.1515/psr-2018-0006
Sajindra, H., Abekoon, T., Jayakody, J. A. D. C. A., & Rathnayake, U. (2024). A novel deep learning model to predict the soil nutrient levels (N, P, and K) in cabbage cultivation. Smart Agricultural Technology, 7(October 2023), 100395. https://doi.org/10.1016/j.atech.2023.100395
Santus, O. (2020). Opto-Structural (XRD) Characterization of Locally Synthesized Barium Sulfate (BaSO4) Nanoparticles from an Aqueous Solution of Barium Chloride (BaCl2) and Sulfuric Acid (H2SO4). December, pp. 21–25.
Sharma, B. S., & Chatterjee, A. (2019). Comparing Soil Test Kits with Standard Lab-Based Soil Test for Agricultural Soil. Crops & Soils Magazine, 3(April), pp. 18–20. https://doi.org/10.2134/cs2019.52.0202
Sharma, K., Bahl, S., Singh, B., Kumar, P., Lochab, S. P., & Pandey, A. (2018). BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam. Radiation Physics and Chemistry, 145(August 2017), 64–73. https://doi.org/10.1016/j.radphyschem.2017.12.019
Stenger, J., Glyptotek, N. C., Eremin, K., Speakman, S., Panalytical, M., & Kennedy, A. R. (2010). LITHOL RED SALTS: CHARACTERIZATION AND DETERIORATION. July 2014.
Tang, K., Mao, X. S., Wu, Q., Zhang, J. X., & Huang, W. J. (2020). Influence of temperature and sodium sulfate content on the compaction characteristics of cement-stabilized macadam base materials. Materials, 13(16). https://doi.org/10.3390/MA13163610
Theodosoglou, E., Koroneos, A., Soldatos, T., Zorba, T., & Paraskevopoulos, K. M. (2017). Comparative Fourier Transform Infrared and X-Ray Powder Diffraction Analysis of Naturally Occurred K-Feldspars. Bulletin of the Geological Society of Greece, 43(5), 2752. https://doi.org/10.12681/bgsg.11681
Van Doorn, M., Van Rotterdam, D., Ros, G., Koopmans, G. F., Smolders, E., & de Vries, W. (2024). The phosphorus saturation degree as a universal agronomic and environmental soil P test. Critical Reviews in Environmental Science and Technology, 54(5), 385–404. https://doi.org/10.1080/10643389.2023.2240211
Zaheri Abdehvand, Z., Karimi, D., Rangzan, K., & Mousavi, S. R. (2024). Assessment of soil fertility and nutrient management strategies in calcareous soils of Khuzestan province: a case study using the Nutrient Index Value method. Environmental Monitoring and Assessment, 196(6). https://doi.org/10.1007/s10661-024-12665-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024

This work is licensed under a Creative Commons Attribution 4.0 International License.