Potential of Carbon Fiber as An Insulation Layer In Anti-Sensor Thermal Pdl: A Review

Authors

  • Rahmatsyah Nasution Physics Study Program, Faculty of Mathematics and Natural Sciences, Defense University, West Java, Republic of Indonesia, 16810
  • Riri Murniati Physics Study Program, Faculty of Mathematics and Natural Sciences, Defense University, West Java, Republic of Indonesia, 16810
  • Salsabila Fauziah Dhuha Nasution Physics Study Program, Faculty of Mathematics and Natural Sciences, Defense University, West Java, Republic of Indonesia, 16810

DOI:

https://doi.org/10.23960/jemit.v5i2.237

Keywords:

Carbon Fiber, Thermal Sensor, Insulation Layer Material, PDL, Potential

Abstract

The advancement of technology, along with the development of the times, makes mastery of technology an absolute thing for the progress of national defense; one of its applications in defense materials is the manufacture of PDL anti-thermal sensor suits. In the PDL anti-thermal sensor suit, carbon fiber is used as insulation. Carbon fiber is a strong, lightweight, and thermal insulator material. This research method uses a qualitative descriptive research method with sources from Google Scholar. In this study, Publish & Perish 8 software was used to help obtain 200 journals on the topics of carbon fiber characteristics, composites, sensors, thermal, carbon fiber resistance generators, carbon fiber thermal conductivity testing, determination of layers of PDL anti-thermal sensor clothes, and the use of carbon fiber as an insulation layer on PDL anti-thermal sensor clothes which were then reviewed as many as 20 journals to be reviewed and summarized for reviewed and summarized to see the potential of carbon fiber as an insulation layer of composite materials in PDL Anti-Thermal Sensor clothing. The conclusion obtained in this study is that carbon fiber has a carbon content of 92% with a solid tensile strength of 452.94 MPa and a low thermal conductivity of 1,13 W/mk and has the potential to be applied as an insulation layer on PDL clothes anti-thermal sensors.

Downloads

Download data is not yet available.

References

Alim, M.I., Mardiana, D., Dwi, A., & Anggoro, D. (2017). Uji Konduktivitas Termal Material Non Logam. Laporan Praktikum Laboratorium Fisika Material.

Banowati, L., Haj, R., & Sartono, D. (2022). Analisis Kekuatan Tarik Carbon/Epoksi Vs E-Glass/Epoksi Dan Kekuatan Bending Komposit Sandwich. Prosiding Seminar Nasional Teknologi Informasi Dan Kedirgantaraan: Peran Generasi Z Dalam Dunia Kedirgantaraan, 7.

Fadhil, Siregar, M.A.M., Supriyadi, S. & Nugroho, Y.S. (2014). Penelitian Sifat Termal dan Mekanik Komposit Serat Karbon. Proceeding Seminar Nasional Teknik Mesin XII.

Firmansyah, H.I., Purnowidodo, A., & Setyabudi, S.A. (2018). Pengaruh Mechanical Bonding Pada Aluminium Dengan Serat Karbon Terhadap Kekuatan Tarik Fiber Metal Laminates. Jurnal Rekayasa Mesin, 9(2).

Gabay, J. (2021). Thermal Imaging Sensor Measures, Alerts Human Presence. Mouser Electronics.

Gade, R., & Moeslund, T. B. (2014). Thermal cameras and applications: a survey. Machine Vision and Applications, 25(1), 245–262. https://doi.org/10.1007/s00138-013-0570-5

Giancoli, D.C. (1998). Physics (5th ed.). Prentice Hall.

Holman, J.P. (2010). Heat Transfer. McGraw-Hill Company.

Huang, X. (2009). Fabrication and Properties of Carbon Fibers. Materials, 2(4), 2369–2403. https://doi.org/10.3390/ma2042369

Huda, R. (2018). Pengaruh Variasi Volume Serat Pelepah Pisang Pada Kekuatan Impak Komposit. Kelembagaan UMM Gudang.

Lestari, I.L., & Mita, S.R. (2016). Review: Potensi Alga Laut Dan Kandungan Senyawa Biologisnya Sebagai Bahan Baku Kosmeseutikal. Farmaka, 14.

Mahmuda, E., Savetlana, S., & Sugiyanto. (2013). Pengaruh Panjang Serat Terhadap Kekuatan Tarik Komposit Berpenguat Serat Ijuk Dengan Matrik Epoxy. JURNAL FEMA, 1(3).

Marina, N.F. (2020). Dampak Lapisan Konstruksi Atap terhadap Suhu Ruang. AGREGAT, 5(2).

Matthews, F.L., & Rawlings, R.D. (2003). Composite Materials: Engineering and Science. Woodhead Publishing.

Mukhtar. (2013). Metode Praktis Penelitian Deskriptif Kualitatif. GP Press Group.

Negoro, D.A.K.R., Setiawan, F. & Putra, I.R. (2023). Analisis Kekuatan Tarik Bahan Komposit Serat Karbon Dengan Metode Vacuum Infusion Dan Vacuum Bagging. Teknika STTKD: Jurnal Teknik, Elektronik, Engine 9(1)

Prihartono, J., & Irhamsyah, R. (2022). Analisis Konduktivitas Termal Pada Material Logam (Tembaga, Alumunium Dan Besi). Presisi, 24(2).

Putra, M.I., & Nugroho, G. (2021). Pengaruh Curing Time Terhadap Sifat Mekanis Komposit Epoxy/Carbon Fiber dan Epoxy/ Glass Fiber dengan Metode Manufaktur Bladder Compression Moulding. Journal of Mechanical Design and Testing, 1, 20–28.

Setiawan, F. & Ardianto, H. (2018). Karakteristik Sifat Mekanis Kekuatan Tarik Komposit Nano Partikel Daur Ulang Pet Dengan Limbah Abu Bagase Boiler. Teknika STTKD: Jurnal Teknik, Elektronik, Engine 5(2), 30–44.

Sony Electronics Inc. (2012). Era kamera Inframerah Dekat XC-E150.

Suarsana, K., Astika, I.M., & Suprapto, L. (2017). Karakterisasi Konduktivitas Termal Dan Kekerasan Komposit Aluminium Matrik Penguat Hibrid Sicw/Al2O3. Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan, 1(2). https://doi.org/10.24912/jmstkik.v1i2.1456

Downloads

Published

2024-05-31

How to Cite

Nasution, R., Murniati, R. ., & Nasution, S. F. D. . (2024). Potential of Carbon Fiber as An Insulation Layer In Anti-Sensor Thermal Pdl: A Review. Journal of Energy, Material, and Instrumentation Technology, 5(2), 65–71. https://doi.org/10.23960/jemit.v5i2.237