Exploration the Influence of Ag+ Ion Solution Concentration Variations Coated on Biofoam Based on Cassava Starch and Corn Fiber on Crystallinity, Density, and Porosity
DOI:
https://doi.org/10.23960/jemit.v5i2.177Keywords:
bio-foam, biopolymer, crystallinity, density, porosityAbstract
The bio-foam in this study was made from biopolymers in the form of cassava starch, cellulose from corn stalks, and a binder polymer in the form of polyvinyl alcohol (PVA). The bio-foam was molded using the thermo pressing method at T = 150 °C and pressed for t = 3 minutes. Ag+ ions were added as an initial review of the physics properties of the bio-foam to serve as a reference for future antibacterial bio-foam manufacturing. Ag+ ions were produced using the electrolysis method from AgBr rods with an electric voltage of 15 volts. Then, the electrolyzed solution containing Ag+ ions was varied in concentration (12 ppm, 17 ppm, 22 ppm, 27 ppm). The ions were then coated on the bio-foam using the dip coating method and dried at room temperature. Along with the increase in the concentration of the Ag+ ion solution coated on the bio-foam, there was an increase in the bio-foam crystallinity with test values of 34.4%, 40.8%, 41.2%, and 42.6%, respectively. Based on these data, the crystallinity value of the bio-foam does not change significantly. It also aligns with the density test values, which tend to be constant with an average test value of 0.322 g/cm³. Furthermore, the concentration of the solution containing Ag+ ions did not influence the bio-foam's porosity properties, where the four samples tended to remain with an average value of 5.9%.
Downloads
References
Abdullah, A.H.D., Chalimah, S., Primadona, I., & Hanantyo, M.H.G. (2018). ‘Physical and Chemical Properties of Corn, Cassava, and Potato Starchs,' in IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing, pp. 1–7. doi:10.1088/1755-1315/160/1/012003.
Abraham, E., Deepa, B., Pothan, L.A., Jacob, M., Thomas, S., Cvelbar, U., & Anandjiwala, R. (2011). ‘Extraction of nanocellulose fibrils from lignocellulosic fibers: A novel approach,' Carbohydrate Polymers, 86(4), pp. 1468–1475. doi:10.1016/j.carbpol.2011.06.034.
Aditama, A.G., & Ardhyananta, H. (2017) ‘Isolasi Selulosa dari Serat Tandan Kosong Kelapa sawit untuk Nano Filler Komposit Absorpsi Suara: Analisis FTIR’, Jurnal Teknik ITS, 6(2), pp. 1–4.
Akmala, A. & Supriyo, E. (2020) Optimasi Konsentrasi Selulosa pada Pembuatan Biodegradable Foam dari Selulosa dan Tepung Singkong. Pentana: Jurnal Penelitian Terapan Kimia, 1(1), 27-40
Boediono, M.P. (2012) Pemisahan dan Pencirian Amilosa dan Amilopektin dari Pati Jagung dan Pati Kentang pada Berbagai Suhu. Bogor Agricultural University (IPB). Available at: http://repository.ipb.ac.id/handle/123456789/58239.
Bourtoom, T. (2007). Effect of Some Process Parameters on The Properties of Edible Film Prepared from Starch. Available at: http://vishnu.sut.ac.th/iat/food_innovation/%0Aup/rice starch film.doc.
Cavallo, D., Tranfo, G., Ursini, C. L., Fresegna, A. M., Ciervo, A., Maiello, R., Paci, E., Pigini, D., Gherardi, M., Gatto, M. P., Buresti, G., & Iavicoli, S. (2018). Biomarkers of Early Genotoxicity and Oxidative Stress for Occupational Risk Assessment of Exposure to Styrene in the Fibreglass Reinforced Plastic Industry. Toxicology Letters, 298, 53–59. https://doi.org/10.1016/j.toxlet.2018.06.006
Coniwanti, P., Mu, R., Saputra, H. W., & Andre, M. R. A. (2018). Pengaruh konsentrasi NaOH Serta Rasio Serat Daun Nanas dan Ampas Tebu Pada Pembuatan Biofoam. Teknik Kimia, 24(1), 1–7.
Etikaningrum, Hermanianto, J., Iriani, E.S., Syarief, R. & Permana, A.W. (2016). Pengaruh Penambahan Berbagai Modifikasi Serat Tandan kosong Sawit Pada Sifat Fungsional Biodegradable Foam. Jurnal Penelitian Pascapanen Pertanian, 3(3), 146–155.
Nurfitasari, I. (2018). Pengaruh Penbahan Kitson dan Gelatin Terhadap Kualitas Biodegradable Foam Berbahan Baku Pati Biji Nangka (Artocarpus Heterophyllus). Thesis. Universitas Islam Negeri Alauddin Makassar
Parasmayanti, F. (2014). Pengaruh Lama Sonikasi Pada Pembuatan Film PANI-Ag/Ni Terhadap Kristalinitas dan Konduktvitasnya. Thesis. Universitas Negeri Malang.
Ritonga, A. U. M. (2019). Pembuatan dan Karakterisasi Biofoam Berbasis Komposit Serbuk Daun Keladi Yang Diperkuat Oleh Polivinil Asetat (PVAc). Thesis. Sumatera Utara University.
Rusliana, E., Saleh, M., & Assagaf, M. (2014). Penentuan Kodisi Proses Terbaik Pembuatan Biofoam Dari Limbah Pertanian Lokal Maluku Utara. Seminar Nasional Sains Dan Teknologi 2014, November, 10–13.
Singh, A. & Bishnoi, N.R. (2012). Enzymatic Hydrolysis Optimization of Microwave Alkali Pretreated Wheat Straw and Ethanol Production By Yeast. Bioresource Technology, 108, pp. 94–101. doi:10.1016/j.biortech.2011.12.084.
Singh, R.K. & Singh, A.K. (2013). Optimization of Reaction conditions for Preparing Carboxymethyl Cellulose from Corn cubic Agricultural Waste. Waste and Biomass Valorization, 4(1), pp. 129–137. doi:10.1007/s12649- 012-9123-9.
Sipahuitar, B. K. syahputra. (2020). Pembuatan Biodegradable Foam (Durio Zibethinus) Dan Nanoserat Selulosa Ampas Teh (Camelia Sinentis) Dengan Proses Pemanggangan. Universitas Sumatera Utara. http://repositori.usu.ac.id/handle/123456789/25568
Soykeabkaew, N., Supaphol, P., & Rujiravanit, R. (2004). Preparation and characterization of jute and flax reinforced starch-based composite foams. Carbohydrate Polymers 58: 53-63.
Wahyudi, T., Sugiyana, D. & Helmy, Q. (2011). Sintesis Nanopartikel Perak dan Uji Aktivitasnya Terhadap Bakteri Ecoli dan S.aureus. Arena Tekstil, 26(1), pp. 1–60.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024

This work is licensed under a Creative Commons Attribution 4.0 International License.
						
							






