Effect of Variation H2SO4 on the Manufacture of Nanocellulose from Corn Cobs

Authors

  • Mega Pertiwi Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Posman Manurung Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Sri Wahyu Suciyati Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Pulung Karo Karo Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141

DOI:

https://doi.org/10.23960/jemit.v5i3.173

Keywords:

acid hydrolysis, nano cellulose, corn cob, nanocellulose, sulfuric acid

Abstract

The acid hydrolysis method has been used to manufacture nanocellulose from corn cobs. This study aims to determine the effect of variations in the concentration of H2SO4 on the characteristics of nanocellulose produced from corn cobs and their surface morphology. The variations of H2SO4 used were 5, 10, 15, and 20%. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) are characterizations used. The results of XRD characterization showed that the crystallite size obtained followed the nanocellulose crystallite size, which was 1.79-2.59 nm. The SEM characterization showed that the resulting nanocellulose's surface morphology was lumpy and non-porous.

Downloads

Download data is not yet available.

References

Alsaleh, N. B. (2021). Adverse cardiovascular responses of engineered nanomaterials: Current understanding of molecular mechanisms and future challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 37, 102421.

Biao, H., Li-rong, T., Da-song, D., Wen, O., Tao, L., & Xue-rong, C. (2011). Preparation of Nanocellulose with Cation–Exchange Resin Catalysed.

Cheng, H. (2015). Lignocellulose Biorefinery Engineering. Woodhead Publishing. Pp75-76.

Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A. P., Oksman, K., Faria, M., Thomas, S., & Pothan, L. A. (2015). Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 22(2), 1075–1090.

Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24.

antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24.

Kementrian Pertanian Republik Indonesia. (2022). Kementerian Pertanian - Data Lima Tahun Terakhir. https://www.pertanian.go.id/home/?show=page&act=view&id=61.

Klemm, J. D., Schreiber, S. L., & Crabtree, G. R. (1998). Dimerization as a regulatory mechanism in signal transduction. Annual Review of Immunology, 16, 569–592.

Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition, 44(22), 3358–3393.

Liu, C., Li, B., Du, H., Lv, D., Zhang, Y., Yu, G., Mu, X., & Peng, H. (2016). Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate Polymers, pp. 151, 716–724.

Maneerung, T., Tokura, S., & Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 72(1), 43–51.

Mendes, C. A. D. C., Adnet, F. A. O., Leite, M. C. A. M., Furtado, C. R. G., & De Sousa, A. M. F. (2015). Chemical, physical, mechanical, thermal, and morphological characterization of corn husk residue. Cellulose Chemistry and Technology, 49(9–10), 727–735.

Nishiyama, Y., Sugiyama, J., Chanzy, H., & Langan, P. (2002). Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 124(31), 9074–9082.

Nishiyama, Y., Sugiyama, J., Chanzy, H., & Langan, P. (2003). Crystal Structure and Hydrogen Bonding System in Cellulose Iα from Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 125(47), 14300–14306.

Peng, B. L., Dhar, N., Liu, H. L., & Tam, K. C. (2011). Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Canadian Journal of Chemical Engineering, 89(5), 1191–1206.

Scherrer, P. (1918). Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Ges. Wiss. Gottingen 26.

Segal, L., J.J, C., A.E, M., & C.M, C. (1959). An Empirical Method For Estimating The Degree of Crystallinity of Native Cellulose Using The X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794.

Silvério, H. A., Flauzino Neto, W. P., Dantas, N. O., & Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products, 44, 427–436.

Winarti, C., Kurniati, M., Arif, A. B., Sasmitaloka, K. S., & Nurfadila. (2018). Cellulose-based nanohydrogel from corncob with chemical crosslinking methods. IOP Conference Series: Earth and Environmental Science, 209(1).

Xie, H., Du, H., Yang, X., & Si, C. (2018). Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. International Journal of Polymer Science, 2018.

Yu, H., Qin, Z., Liang, B., Liu, N., Zhou, Z., & Chen, L. (2013). Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. Journal of Materials Chemistry A, 1(12), 3938–3944.

Downloads

Published

2024-08-31

How to Cite

Pertiwi, M., Manurung, P., Suciyati, S. W., & Karo, P. K. (2024). Effect of Variation H2SO4 on the Manufacture of Nanocellulose from Corn Cobs. Journal of Energy, Material, and Instrumentation Technology, 5(3), 93–99. https://doi.org/10.23960/jemit.v5i3.173