Manufacture of Nanocellulose from Red Onion Peel Waste Using Acid Hydrolysis Method with Variation of H2SO4 Concentration

Authors

  • Shabrina Yakosati Shabrina Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Posman Manurung Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Sri Wahyu Suciyati Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Pulung Karo Karo Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, Indonesia, 35141

DOI:

https://doi.org/10.23960/jemit.v6i2.172

Keywords:

Crystallite,H2O2,H2SO4, NaOH, Nanocellulose, SEM and XRD.

Abstract

The manufacture of nanocellulose from red onion peel waste has been carried out using the acid hydrolysis method using H2SO4. This study aims to determine the effect of variations in the concentration of H2SO4 on the size of nanocellulose crystallites from onion peels and the surface morphology of nanocellulose from onion peels. The manufacture of nanocellulose was carried out in three stages, namely delignification using 10% NaOH to remove lignin and hemicellulose, bleaching using 10% H2O2 for bleaching and isolation of nanocellulose using H2SO4. The variation of H2SO4 used is 5; 10; 15 and 20%. The characterizations used are XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscopy). The results of XRD characterization showed that the crystalline phase contained at the highest diffraction peak and the optimum concentration of H2SO4 to make nanocellulose from onion peel was 20%. The results of SEM characterization showed that the morphology of the onion peel nanocellulose was still united to form bundles or agglomerates.

Downloads

Download data is not yet available.

References

Arjuna, A., Natsir, S., Khumaerah, A. A., & Yulianty, R. (2018). Modifikasi serat limbah kubis menjadi nanokristalin selulosa melalui metode hidrolisis asam. Jurnal Farmasi Galenika, 4(2), 119–125.

Benitez, V. E., Molla, M. A., Martin, C. Y., Aguilera, F. J., Lopez-Andreu, K., Cools, L. A., Terry, R. M., & Esteban. (2011). Characterization of industrial onion wastes (Allium cepa L.): Dietary fiber and bioactive compounds. Plant Foods for Human Nutrition, 66, 48–57.

Cullity, B. D. (1977). Elements of X-ray diffraction (2nd ed.). Addison Wesley Publishing Company.

Future Markets, Inc. (2012). The global market for nanocellulose 2017–2027. Future Markets, Inc.

Hertiwi, L. R., Afni, N. L., & Sanjaya, I. G. M. (2020). Ekstraksi dan karakterisasi nanoselulosa dari limbah kulit bawang merah. Journal of Education and Chemistry, 2(1), 77–81.

Ioelovich, M. (2012). Optimal conditions for isolation of nanocrystalline cellulose particles. Nanoscience and Nanotechnology, 2(2), 9–13.

Klemm, D., Philipp, B., Heinze, T., Heinze, U., & Wagenknecht, W. (1998). Comprehensive cellulose chemistry: Fundamentals and analytical methods (Vol. 1). Wiley-VCH Verlag GmbH.

Lee, H. V., Hamid, S. B. A., & Zain, S. K. (2014). Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal, 2014, 631013. https://doi.org/10.1155/2014/631013

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994.

Ningtyas, K. R., Muslihudin, R., & Sari, I. N. (2020). Sintesis nanoselulosa dari limbah hasil pertanian dengan menggunakan variasi konsentrasi asam. Jurnal Penelitian Pertanian Terapan, 20(2), 142–147.

Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 124(31), 9075–9081.

Nishiyama, Y., Sugiyama, J., Chanzy, H., & Langan, P. (2003). Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 125(47), 14300–14306.

Reddy, J. P., & Rhim, J. W. (2018). Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. Journal of Natural Fibers, 15(4), 465–473.

Robles, E., Urruzola, I., Labidi, J., & Serrano, L. (2015). Surface modified nanocellulose as reinforcement in poly(lactic acid) to conform new composites. Industrial Crops and Products, 71, 44–53.

Salak, F., Daneshvar, S., & Abedi, J. (2013). Adding value to onion (Allium cepa L.) waste by subcritical water treatment. Fuel Processing Technology, 112, 86–92.

Scherrer, P. (1918). Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 26, 98–100.

Segal, L. C., Creely, J. J., Martin, A. E. J., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786–794.

Skoog, D. A. (1998). Principles of instrumental analysis (5th ed.). John Wiley & Sons.

Smith, W. F. (1990). Materials science and engineering. University of Central Florida.

Yu, H., Qin, Z., Liang, B., Liu, N., Zhou, Z., & Chen, L. (2013). Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. Journal of Materials Chemistry A, 1(12), 3938–3944.

Downloads

Published

2025-05-31

How to Cite

Shabrina, S. Y., Manurung, P., Suciyati, S. W., & Karo, P. K. (2025). Manufacture of Nanocellulose from Red Onion Peel Waste Using Acid Hydrolysis Method with Variation of H2SO4 Concentration. Journal of Energy, Material, and Instrumentation Technology, 6(2), 54–59. https://doi.org/10.23960/jemit.v6i2.172