The Effect of H2SO4 Variations on the Synthesis and Characterization of Nanocellulose Using Pineapple Peel Fiber

Authors

  • Rosanti Sitohang Department of Physics, University of Lampung, Bandar Lampung, Indonesia
  • Posman Manurung Department of Physics, University of Lampung, Bandar Lampung, Indonesia
  • Sri Wahyu Suciyati Department of Physics, University of Lampung, Bandar Lampung, Indonesia
  • Pulung Karo Karo Department of Physics, University of Lampung, Bandar Lampung, Indonesia

DOI:

https://doi.org/10.23960/jemit.v5i2.168

Keywords:

Pineapple skin, nano cellulose, acid hydrolysis, H2SO4

Abstract

Manufacturing nanocellulose made from pineapple peel fiber has been carried out using acid hydrolysis. This study aims to determine the effect of variations in H2SO4 on the synthesis of nanocellulose in pineapple peel fibers and on the crystal structure, surface morphology, and constituent elements of pineapple skin fiber nanocellulose. The variations of H2SO4 used were 5, 10, 15 and 20%. X-ray diffraction (XRD) and Scanning Electron microscopy (SEM) are characterizations used. The results of XRD characterization showed that the size of the resulting crystallite had met the appropriate size in the range of values from 2.03 – 2.21 nm. The results of SEM characterization show that the image is not porous and lumpy.

Downloads

Download data is not yet available.

References

Bacha, G. B., (2022). Response Surface Methodology Modeling, Experimental Validation Optimization of Acid Hydrolysis Process Parameters for Nanocelluloce Extraction. South African Journal of Chemical Engineering. 176-185.

Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A., & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibers by steam explosion. Carbohydrate Polymers, 81(3), 720–725.

Cullity, B. D. (1978). Elements of X-Ray Diffraction, 2nd edition. Department of Metallurgical Engineering and Materials Science. Addison-Wesley Publishing Company Inc. USA.

Cullity BD (1977). Element of X-Ray Diffraction second edition. Addison Wesley Publishing Company, Inc., California. pp. 3, 4, 82.

Dai, H., Ou, S., Huang, Y., & Huang, H. (2018). Utilization of Pineapple Pell for Production of Nanocelluloce and Film Application. Cellulose. 4-7

Hansen, T. S., Boisen, A., Woodley, J. M., Pedersen, S. & Riisager, A. (2006). Production of HMF from Aqueous Fructose. Microwave Study. 8:1-2.

Hossain, Md. F., Akhtar, S., & Anwar, M. (2015). Nutritional Value and Medicinal Benefits of Pineapple. International Journal of Nutrition and Food Sciences. 4(1):84-88

Iriani, S. E., Wahyunungsih, K., Sunarti, T. C., & Permana, A. (2015). Synthesis of Nanocellulose From Pineapple Fibers And Its Application As Nanofiller In Polyvinyl Alcohol-Based Films. Journal of Agricultural Postharvest Research. Volumes 12 11 – 19.

Kanade, K.G., Kale, B.B., Aiyer, R.C. & Das, B.K. (2006). Effect of Solvents On The Synthesis Of Nano-Size Zinc Oxide And Its Properties. Materials Research Bulletin. 41:590-600.

Kane, S. A. (2005). Introduction to Physics in Modern Medicine. Taylor and Francis. New York, USA

Keon, D. Y., Yulianti, I. M., & Jati, W. N. (2018). The Ability of Pineapple Crown Leaf Cellulose (Ananas Comosus) as a Bioadsorbent for Copper Metal (Cu). Journal of Biota. Vol. 3 (2) 70-78.

Klemm, D. (1998). Regiocontrol in Cellulose Chemistry: Principles and Examples of Etherification and Esterification. ACS Symposium Series, Vol. 688, pp. 19–37.

Liu, G. Q., Pan, X.J., Li, J., Li. C., & Ji, C., (2021). Facile preparation and characterization of anatase TiO2 / Nanocelluloce Composite for Photocatalytic degradation of methyl orange. Journal of Saudi. 101383.

Mittal, A., Katahira. R., Himmel, ME, & Johnson, D. K., (2011). Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnology for Biofuels. Page 3.

Nishiyama, Y., Langan, P., & Chanzy, H., (2002). Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 124(31):9074-82. doi: 10.1021/ja0257319

Nishiyama, Y., Langan, P., & Chanzy, H., (2003). Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 125(47):14300-6. doi: 10.1021/ja037055w. PMID: 14624578.

Scherrer, P. (1918). Bestimmung der Grosse und der inneren Structure von Kolloidteilchen mittels Rntgenstrahlen, Nachr. Ges. Wiss. Gottingen 26, pp 98-100.

Segal, L., Creely, J. J., Martin Jr., A. E. & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray diffractometer. Textile Research Journal, 29.786-794. http://dx.doi.org/10.1177/004051755902901003

Smith, WF (1990). Materials Science and Engineering. University of Central Florida. Florida. pp. 102, 616, 634.

Song, Y., Zhou, J., Zhang L., & Wu, X. (2008). Homogeneous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydrate Polymers 73:18-25.

Syauqi, A., & Inasari, S. S. (2020). Utilization of Pineapple Skin Waste (Ananas comosus L.) into Bioethanol with the Addition of Different Yeast (Saccharomyces cerevisiae). LOUPE Bulletin Vol 16 No. 02.

Teixeira, L.T., Braz, W.F., Siqueira, R.N.C.D., Pandoli, O.G., & Geraldes, M.C. (2021). Sulfated and Carboxylated Nanocelluloce for Co+2 Adsorption. Journal of Materials Research and Technology. 434-437.

Zang, Y., Xue, G., Zhang, X., & Zhao, Y. (2012). Enzymatic Preparation of: 754-758 Nanocrystalline Cellulose from Bamboo Fibers. Advanced Materials Research. 441.

Downloads

Published

2024-05-31

How to Cite

Sitohang, R., Manurung, P. ., Suciyati, S. W. ., & Karo, P. K. (2024). The Effect of H2SO4 Variations on the Synthesis and Characterization of Nanocellulose Using Pineapple Peel Fiber. Journal of Energy, Material, and Instrumentation Technology, 5(2), 43–49. https://doi.org/10.23960/jemit.v5i2.168