Pengaruh Variasi Polivinilpirolidon (PVP) Terhadap Pembentukan Serat Nano TiO2 Menggunakan Metode Electrospinning

Authors

  • Vega Rahmawati Ar Department of Physics, University of Lampung
  • Posman Manurung Departmen of Physics, University of Lampung
  • Junaidi Junaidi Department of Physics, University of Lampung
  • Pulung Karo Karo Department of Physics, University of Lampung

DOI:

https://doi.org/10.23960/jemit.v2i1.49

Keywords:

Electrospinning, Nanofiber, Polyvinylpyrrolidone, TiO2, Viscosity

Abstract

Research on the formation of TiO2 nanofiber has been carried out with PVP variations of 1.1; 1,2; 1.3; 1.4 and 1.5 grams using electrospinning. This study aims to determine the effect of PVP variation on the viscosity and morphology of TiO2 nanofibers and to determine the crystal structure of the fibers. Synthesis of TiO2 was carried out using the sol-gel method. TTIP is used as a precursor, ethanol as a solvent, acetic acid as a catalyst and PVP as a fiber-forming polymer. The results of the viscosity measurement show that the amount of PVP used in the sample is directly proportional to the level of solution viscosity. Based on the results of SEM characterization, it showed relatively uniform nanofiber morphology with fiber diameter ranging from 94 nm - 735 µm. The results of TEM characterization showed that the size of TiO2 nanofiber particles ranged from 7-15 nm. The results of XRD analysis showed that the crystal structures formed at a calcination temperature of 450 oC were the anatase and rutile phases.

Downloads

Download data is not yet available.

References

Camposeco, R., Castillo, S., Centeno, I. M., Navarrete, J., & Gómez, R. (2014). Effect of The Ti/Na Molar Ratio on The Acidity and The Structure of TiO2 Nanostructures: Nanotubes, Nanofibers and Nanowires. Materials Characterization, 90, 113-120.

Chronakis, I. S. (2005). Novel nanocomposites and nanoceramics based on polymer nanofbers using electrospinning process—a review. Journal of Materials Processing Technology, 167(2-3), 283–293.

Haider, A. J., Jameel, Z. N., Al-Hussaini, I. H. M. (2019). Review on: Titanium Dioxide Applications. Energy Procedia, 157, 17-29.

Katoch, A., Choi, S. W., Kim, J. H., Lee, J. H., Lee, J. S., & Kim, S. S. (2015). Importance of The Nanograin Size on the H2S-Sensing Properties of ZnO–CuO Composite Nanofibers. Sensors and Actuators B: Chemical, 214, 111-116.

Krisnandika, V. E. (2017). Produksi Nanofiber dan Aplikasinya dalam Pengolahan Air. Bandung: Bandung Institute of Technology.

Manurung, P., Situmeang, R., Sinuhaji, P., & Sembiring, S. (2020). Effect of Sulfur Doped Nanotitania for Degradation of Remazol Yellow and Phenol. Asian Journal of Chemistry, 32(12), 3019-3023.

Nateq, M. H., & Riccardo, C. (2019). Sol-Gel Synthesis of TiO2 Nanocrystalline Particles with Enhanced Surface Area Through The Reverse Micelle Approach. Advances in Materials Science and Engineering, 2019, 1-14.

Parida, K. M., & Naik, B. (2009). Synthesis of Mesoporous TiO2 Spheres by Template Free Homogeneous Coprecipitation Method and Their Photocatalytic Activity under Visible Light Illumination. Journal of Colloid and Interface Science, 333, 269–276.

Someswararao, M. V., Dubey, R. S., & Subbarao, P. S. V. (2021). Electrospun Composite Nanofibers Prepared by Varying Concentrations of TiO2/ZnO Solutions for Photocatalytic Applications. Journal of Photochemistry and Photobiology, 6, 1-7.

Tang, Z. S., Bolong, N., Saad, I., Ramli, R., & Lim, F. T. Y. (2016). Effect of Polyvinylpyrrolidone and Fabrication Parameters on Electrospun Titanium Oxide Nanofibers Diameter. Jurnal Teknologi, 78(12), 19-24.

Yang, G., Zifeng, Y., & Tiancun, X. (2012). Low-Temperature Solvothermal Synthesis of Visible-Light-Responsive S-Doped TiO2 Nanocrystal. Journal of Applied Surface Science, 258(8), 4016-4022.

Downloads

Published

2021-01-31

How to Cite

Ar, V. R., Manurung, P., Junaidi, J., & Karo, P. K. (2021). Pengaruh Variasi Polivinilpirolidon (PVP) Terhadap Pembentukan Serat Nano TiO2 Menggunakan Metode Electrospinning. Journal of Energy, Material, and Instrumentation Technology, 2(1), 11–16. https://doi.org/10.23960/jemit.v2i1.49