Fabrication of Bioceramic Carbonated Hydroxyapatite–Chitosan Composite Scaffold Derived from River Snail Shells via Freeze-Drying for Bone Grafting Applications

Authors

  • Rosita Wati Institut Teknologi Sumatera
  • Vayza Deva Alnovera Institut Teknologi Sumatera
  • Aldi Herbanu Institut Teknologi Sumatera
  • Endah Institut Teknologi Sumatera
  • Sekar Asri Tresnaningtyas Institut Teknologi Sumatera
  • Muhammad Wildan Gifari Institut Teknologi Sumatera
  • Marsudi Siburian Institut Teknologi Sumatera

DOI:

https://doi.org/10.23960/jemit.374

Keywords:

bone tissue engineering, carbonated hydroxyapatite, chitosan, freeze-drying, scaffold

Abstract

The prevalence of bone fractures in Indonesia has increased by up to 8.5%, making cost-effective biomaterial alternatives for bone grafting applications necessary. This study aims to synthesize a hydroxyapatite carbonate (CHAp) composite scaffold from river snail shells (Semisulcospira libertina) and chitosan via freeze drying for bone tissue engineering applications. The shells were calcined at 1000°C to produce CaO, which was then synthesized into CHAp via a precipitation method with a Ca:P:CO3 molar ratio of 1.67:1:1. The CHAp/chitosan scaffold was fabricated at a 2:1 (w/w) ratio using freeze drying at -80°C for 72 hours. Characterization was performed using XRD, FTIR, SEM-EDX, and mechanical and degradation testing. XRD results showed that CHAp formed according to the JCPDS No. 09-0432 standard, exhibiting 85.61% crystallinity, a crystal size of 17.07 nm, and type B carbonate substitution. FTIR spectra confirmed the presence of PO4(3-), CO3(2-), and OH(-) groups. SEM-EDX analysis revealed a Ca/P ratio of 1.74 and a carbonate content of 4.06%. The scaffold has a porous structure with pore sizes ranging from 3.6 to 14 um. It has a compressive strength of 0.255 MPa, a maximum strain of 70.71%, and a gradual degradation profile reaching 40.79% in 48 hours. These results demonstrate that the CHAp/chitosan scaffold fabricated from river snail shells has physicochemical and mechanical properties suitable for bone grafting applications. This material offers a sustainable, cost-effective alternative for bone tissue regeneration.

Downloads

Download data is not yet available.

Author Biographies

Rosita Wati, Institut Teknologi Sumatera

Department of Biomedical Engineering

Vayza Deva Alnovera, Institut Teknologi Sumatera

Department of Biomedical Engineering

Aldi Herbanu, Institut Teknologi Sumatera

Department of Biomedical Engineering

Endah, Institut Teknologi Sumatera

Departement of Biomedical Engineering

Sekar Asri Tresnaningtyas, Institut Teknologi Sumatera

Departement of Biomedical Engineering

Muhammad Wildan Gifari, Institut Teknologi Sumatera

Department of Biomedical Engineering

Marsudi Siburian, Institut Teknologi Sumatera

Department of Biomedical Engineering

References

Asimeng, B. O., Afeke, D. W., & Tiburu, E. K. (2020). Biomaterial for bone and dental implants: Synthesis of B-type carbonated hydroxyapatite from biogenic source. In Biomaterials. IntechOpen. https://doi.org/10.5772/intechopen.92256

Bozorgi, A., Mozafari, M., Khazaei, M., Soleimani, M., & Jamalpoor, Z. (2021). Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications. BioImpacts. https://doi.org/10.34172/bi.2021.23451

Chinnasami, H., Dey, M. K., & Devireddy, R. (2023). Three-dimensional scaffolds for bone tissue engineering. Bioengineering, 10(7), 759. https://doi.org/10.3390/bioengineering10070759

Copete, H., Lopez, E., & Baudin, C. (2024). Synthesis and characterization of B-type carbonated hydroxyapatite materials: Effect of carbonate content on mechanical strength and in vitro degradation. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 63(4), 255-267. https://doi.org/10.1016/j.bsecv.2023.12.001

Daud, F. D. M., Azir, M. M. M., Mahmud, M. S., Sarifuddin, N., & Mohd Zaki, H. H. (2021). Preparation of CaO-based pellet using rice husk ash via granulation method for potential CO2 capture. IIUM Engineering Journal, 22(1), 234-244. https://doi.org/10.31436/iiumej.v22i1.1544

Deveci, M. Z. Y., Gonenci, R., Canpolat, I., & Kanat, O. (2020). In vivo biocompatibility and fracture healing of hydroxyapatite-hexagonal boron nitride-chitosan-collagen biocomposite coating in rats. Turkish Journal of Veterinary and Animal Sciences, 44(1), 76-88. https://doi.org/10.3906/vet-1906-21

Feng, C., Zhang, K., He, R., Ding, G., Xia, M., Jin, X., & Xie, C. (2020). Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. Journal of Advanced Ceramics, 9(3), 360-373. https://doi.org/10.1007/s40145-020-0375-8

Fihri, A., Len, C., Varma, R. S., & Solhy, A. (2017). Hydroxyapatite: A review of syntheses, structure, and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 347, 48-76. https://doi.org/10.1016/j.ccr.2017.06.009

Habiburrohman, M. R., Jamilludin, M. A., Cahyati, N., Herdianto, N., & Yusuf, Y. (2025). Fabrication and in vitro cytocompatibility evaluation of porous bone scaffold based on cuttlefish bone-derived nano-carbonated hydroxyapatite reinforced with polyethylene oxide/chitosan fibrous structure. RSC Advances, 15(7), 5135-5150. https://doi.org/10.1039/D4RA08457H

Habte, L., Shiferaw, N., Mulatu, D., Thenepalli, T., Chilakala, R., & Ahn, J. (2019). Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability, 11(11), 3196. https://doi.org/10.3390/su11113196

Inbaraj, S., Kannan, M., Boopathi, N. M., Soundararajan, R. P., & Rahale, C. S. (2023). Biological preparation, characterization of CaO nanoparticles from egg shell waste and insecticidal activity against seed weevil, Sitophilus oryzae L. in maize. International Journal of Environment and Climate Change, 13(9), 2664-2671. https://doi.org/10.9734/ijecc/2023/v13i92497

Jaffri, M. Z., Mohd Ismail, Z. M., Dermawan, S. K., & Abdullah, H. Z. (2022). Sample preparation of the natural source hydroxyapatite (HAp) derived from black tilapia fish scales. Journal of Physics: Conference Series, 2169(1), 012033. https://doi.org/10.1088/1742-6596/2169/1/012033

Kamaruzaman, N., Fauzi, M. B., Tabata, Y., & Yusop, S. M. (2023). Functionalised hybrid collagen-elastin for acellular cutaneous substitute applications. Polymers, 15(8), 1929. https://doi.org/10.3390/polym15081929

Kawsar, M., Hossain, M. S., Bahadur, N. M., & Ahmed, S. (2024). Synthesis of nano-crystallite hydroxyapatites in different media and a comparative study for estimation of crystallite size using Scherrer method, Halder-Wagner method size-strain plot, and Williamson-Hall model. Heliyon, 10(3), e25347. https://doi.org/10.1016/j.heliyon.2024.e25347

Kemenkes. (2018). Laporan Riskesdas 2018 Nasional. Lembaga Penerbit Balitbangkes.

Khodaverdi, K., Naghib, S. M., Mozafari, M. R., & Rahmanian, M. (2025). Chitosan/hydroxyapatite hydrogels for localized drug delivery and tissue engineering: A review. Carbohydrate Polymer Technologies and Applications, 9, 100640. https://doi.org/10.1016/j.carpta.2024.100640

Lenz, S., Dubois, N., Geist, J., & Raeder, U. (2020). Phacotus lenticularis content in carbonate sediments and epilimnion in four German hard water lakes. Journal of Limnology, 79(2), 187-197. https://doi.org/10.4081/jlimnol.2020.1945

Mahanani, E. S., Khusnatunnisa, K., & Mutmainnah, M. (2019). Efektivitas inkorporasi platelet rich plasma pada perancah hidrogel CaCO3. Insisiva Dental Journal, 8(2). https://doi.org/10.18196/di.8206

Morgan, E. F., Unnikrisnan, G. U., & Hussein, A. I. (2018). Bone mechanical properties in healthy and diseased states. Annual Review of Biomedical Engineering, 20, 119-143. https://doi.org/10.1146/annurev-bioeng-062117-121139

Muarif, M. F., Yusuf, Y., & Agipa, A. I. (2024). Type-B carbonated hydroxyapatite based on crab shells: A review on synthesis and characterization. Journal of Energy, Material, and Instrumentation Technology, 5(1), 35-42. https://doi.org/10.23960/jemit.v5i1.241

Permatasari, H. A., Sari, M., Aminatun, S., Suciati, T., Dahlan, K., & Yusuf, Y. (2021). Nano-carbonated hydroxyapatite precipitation from abalone shell (Haliotis asinina) waste as the bioceramics candidate for bone tissue engineering. Nanomaterials and Nanotechnology, 11, 184798042110328. https://doi.org/10.1177/18479804211032851

Rachman, T., Rahmadian, R., & Rusjdi, S. R. (2023). Pola penatalaksanaan fraktur femur di RSUP Dr. M. Djamil Padang tahun 2020. Jurnal Ilmu Kesehatan Indonesia, 4(2), 81-87. https://doi.org/10.25077/jikesi.v4i2.624

Ram, U. B., Sujatha, V., Vidhya, S., Jayasree, R., & Mahalaxmi, S. (2023). Oyster shell-derived nano-hydroxyapatite and proanthocyanidin pretreatment on dentinal tubule occlusion and permeability before and after acid challenge: An in vitro study. Journal of Materials Science: Materials in Medicine, 34(4), 17. https://doi.org/10.1007/s10856-023-06724-4

Rathod, C. L., & Yadav, G. (2020). A cross-sectional study of clinico-demographic profile of patients with complex proximal femoral fractures. International Journal of Medical and Biomedical Studies, 4(8), 128-130. https://doi.org/10.32553/ijmbs.v4i8.1445

Rianti, D., Purnamasari, A. E., Putri, R. R., Salsabilla, N. Z., Faradillah, Munadziroh, E., Agustantina, T. H., Meizarini, A., Yuliati, A., & Syahrom, A. (2023). The compressive strength and static biodegradation rate of chitosan-gelatin limestone-based carbonate hydroxyapatite composite scaffold. Dental Journal, 56(3), 160-165. https://doi.org/10.20473/j.djmkg.v56.i3.p160-165

Safarzadeh, M., Ramesh, S., Tan, C. Y., Chandran, H., Ching, Y. C., Noor, A. F. M., Krishnasamy, S., & Teng, W. D. (2020). Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 59(2), 73-80. https://doi.org/10.1016/j.bsecv.2019.08.001

Said, H. A., Noukrati, H., Ben Youcef, H., Bayoussef, A., Oudadesse, H., & Barroug, A. (2021). Mechanical behavior of hydroxyapatite-chitosan composite: Effect of processing parameters. Minerals, 11(2), 213. https://doi.org/10.3390/min11020213

Sari, M., Suciati, T., Dahlan, K., & Yusuf, Y. (2021). Nanostructure of carbonated hydroxyapatite precipitation extracted from pearl shells (Pinctada maxima) by pH treatment. 16(4), 1619-1625.

Sawada, N., & Nakano, T. (2022). Insights into sex-related size and shape dimorphism in Semisulcospira niponica. Journal of Molluscan Studies, 88(2). https://doi.org/10.1093/mollus/eyac013

Sidiqa, A. N., Rahaju, A., Trilarasati, T., & Khoirunnisa, M. (2020). Pengukuran kekerasan karbonat apatit dengan penguat zirkonia sebagai aplikasi implan gigi. Padjadjaran Journal of Dental Researchers and Students, 4(1), 21. https://doi.org/10.24198/pjdrs.v4i1.25710

Song, X., Philpott, M. A., Best, S. M., & Cameron, R. E. (2024). Controlling the architecture of freeze-dried collagen scaffolds with ultrasound-induced nucleation. Polymers, 16(2), 213. https://doi.org/10.3390/polym16020213

Sukegawa, S., Kanno, T., Yamamoto, N., Nakano, K., Takabatake, K., Kawai, H., Nagatsuka, H., & Furuki, Y. (2019). Biomechanical loading comparison between titanium and unsintered hydroxyapatite/poly-L-lactide plate system for fixation of mandibular subcondylar fractures. Materials, 12(9), 1557. https://doi.org/10.3390/ma12091557

Susanto, R. (2021). Potensi pembuatan replika tulang berpori menggunakan template ampas tebu. ChemPublish Journal, 5(2), 116-129. https://doi.org/10.22437/chp.v5i2.10612

Wati, R., & Yusuf, Y. (2019). Effect of sintering temperature on carbonated hydroxyapatite derived from common cockle shells: Composition and crystal characteristics. Key Engineering Materials, 818, 37-43. https://doi.org/10.4028/www.scientific.net/KEM.818.37

Weldeslase, M. G., Benti, N. E., Desta, M. A., & Mekonnen, Y. S. (2023). Maximizing biodiesel production from waste cooking oil with lime-based zinc-doped CaO using response surface methodology. Scientific Reports, 13, 4430. https://doi.org/10.1038/s41598-023-30961-w

Wong, S. K., Yee, M. M. F., Chin, K. Y., & Ima-Nirwana, S. (2023). A review of the application of natural and synthetic scaffolds in bone regeneration. Journal of Functional Biomaterials, 14(5), 286. https://doi.org/10.3390/jfb14050286

Yap, C. K., & Al-Mutairi, K. A. (2021). Ecological-health risk assessments of heavy metals (Cu, Pb, and Zn) in aquatic sediments from the ASEAN-5 emerging developing countries: A review and synthesis. Biology, 11(1), 7. https://doi.org/10.3390/biology11010007

Zhu, Y., Shao, Y., Guan, T., Lin, B., Guo, C., & Pan, T. (2022). Analysis of the stress between implant prostheses with different moduli and surrounding bones. https://doi.org/10.21203/rs.3.rs-1358844/v1

Downloads

Published

2025-11-16

How to Cite

Wati, R., Alnovera, V. D., Herbanu, A., Endah, Tresnaningtyas, S. A., Gifari, M. W., & Siburian, M. (2025). Fabrication of Bioceramic Carbonated Hydroxyapatite–Chitosan Composite Scaffold Derived from River Snail Shells via Freeze-Drying for Bone Grafting Applications. Journal of Energy, Material, and Instrumentation Technology, 6(4), 198–208. https://doi.org/10.23960/jemit.374