Fabrication of Bioceramic Carbonated Hydroxyapatite–Chitosan Composite Scaffold Derived from River Snail Shells via Freeze-Drying for Bone Grafting Applications
DOI:
https://doi.org/10.23960/jemit.374Keywords:
bone tissue engineering, carbonated hydroxyapatite, chitosan, freeze-drying, scaffoldAbstract
The prevalence of bone fractures in Indonesia has increased by up to 8.5%, making cost-effective biomaterial alternatives for bone grafting applications necessary. This study aims to synthesize a hydroxyapatite carbonate (CHAp) composite scaffold from river snail shells (Semisulcospira libertina) and chitosan via freeze drying for bone tissue engineering applications. The shells were calcined at 1000°C to produce CaO, which was then synthesized into CHAp via a precipitation method with a Ca:P:CO3 molar ratio of 1.67:1:1. The CHAp/chitosan scaffold was fabricated at a 2:1 (w/w) ratio using freeze drying at -80°C for 72 hours. Characterization was performed using XRD, FTIR, SEM-EDX, and mechanical and degradation testing. XRD results showed that CHAp formed according to the JCPDS No. 09-0432 standard, exhibiting 85.61% crystallinity, a crystal size of 17.07 nm, and type B carbonate substitution. FTIR spectra confirmed the presence of PO4(3-), CO3(2-), and OH(-) groups. SEM-EDX analysis revealed a Ca/P ratio of 1.74 and a carbonate content of 4.06%. The scaffold has a porous structure with pore sizes ranging from 3.6 to 14 um. It has a compressive strength of 0.255 MPa, a maximum strain of 70.71%, and a gradual degradation profile reaching 40.79% in 48 hours. These results demonstrate that the CHAp/chitosan scaffold fabricated from river snail shells has physicochemical and mechanical properties suitable for bone grafting applications. This material offers a sustainable, cost-effective alternative for bone tissue regeneration.
Downloads
References
Asimeng, B. O., Afeke, D. W., & Tiburu, E. K. (2020). Biomaterial for bone and dental implants: Synthesis of B-type carbonated hydroxyapatite from biogenic source. In Biomaterials. IntechOpen. https://doi.org/10.5772/intechopen.92256
Bozorgi, A., Mozafari, M., Khazaei, M., Soleimani, M., & Jamalpoor, Z. (2021). Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications. BioImpacts. https://doi.org/10.34172/bi.2021.23451
Chinnasami, H., Dey, M. K., & Devireddy, R. (2023). Three-dimensional scaffolds for bone tissue engineering. Bioengineering, 10(7), 759. https://doi.org/10.3390/bioengineering10070759
Copete, H., Lopez, E., & Baudin, C. (2024). Synthesis and characterization of B-type carbonated hydroxyapatite materials: Effect of carbonate content on mechanical strength and in vitro degradation. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 63(4), 255-267. https://doi.org/10.1016/j.bsecv.2023.12.001
Daud, F. D. M., Azir, M. M. M., Mahmud, M. S., Sarifuddin, N., & Mohd Zaki, H. H. (2021). Preparation of CaO-based pellet using rice husk ash via granulation method for potential CO2 capture. IIUM Engineering Journal, 22(1), 234-244. https://doi.org/10.31436/iiumej.v22i1.1544
Deveci, M. Z. Y., Gonenci, R., Canpolat, I., & Kanat, O. (2020). In vivo biocompatibility and fracture healing of hydroxyapatite-hexagonal boron nitride-chitosan-collagen biocomposite coating in rats. Turkish Journal of Veterinary and Animal Sciences, 44(1), 76-88. https://doi.org/10.3906/vet-1906-21
Feng, C., Zhang, K., He, R., Ding, G., Xia, M., Jin, X., & Xie, C. (2020). Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. Journal of Advanced Ceramics, 9(3), 360-373. https://doi.org/10.1007/s40145-020-0375-8
Fihri, A., Len, C., Varma, R. S., & Solhy, A. (2017). Hydroxyapatite: A review of syntheses, structure, and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 347, 48-76. https://doi.org/10.1016/j.ccr.2017.06.009
Habiburrohman, M. R., Jamilludin, M. A., Cahyati, N., Herdianto, N., & Yusuf, Y. (2025). Fabrication and in vitro cytocompatibility evaluation of porous bone scaffold based on cuttlefish bone-derived nano-carbonated hydroxyapatite reinforced with polyethylene oxide/chitosan fibrous structure. RSC Advances, 15(7), 5135-5150. https://doi.org/10.1039/D4RA08457H
Habte, L., Shiferaw, N., Mulatu, D., Thenepalli, T., Chilakala, R., & Ahn, J. (2019). Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability, 11(11), 3196. https://doi.org/10.3390/su11113196
Inbaraj, S., Kannan, M., Boopathi, N. M., Soundararajan, R. P., & Rahale, C. S. (2023). Biological preparation, characterization of CaO nanoparticles from egg shell waste and insecticidal activity against seed weevil, Sitophilus oryzae L. in maize. International Journal of Environment and Climate Change, 13(9), 2664-2671. https://doi.org/10.9734/ijecc/2023/v13i92497
Jaffri, M. Z., Mohd Ismail, Z. M., Dermawan, S. K., & Abdullah, H. Z. (2022). Sample preparation of the natural source hydroxyapatite (HAp) derived from black tilapia fish scales. Journal of Physics: Conference Series, 2169(1), 012033. https://doi.org/10.1088/1742-6596/2169/1/012033
Kamaruzaman, N., Fauzi, M. B., Tabata, Y., & Yusop, S. M. (2023). Functionalised hybrid collagen-elastin for acellular cutaneous substitute applications. Polymers, 15(8), 1929. https://doi.org/10.3390/polym15081929
Kawsar, M., Hossain, M. S., Bahadur, N. M., & Ahmed, S. (2024). Synthesis of nano-crystallite hydroxyapatites in different media and a comparative study for estimation of crystallite size using Scherrer method, Halder-Wagner method size-strain plot, and Williamson-Hall model. Heliyon, 10(3), e25347. https://doi.org/10.1016/j.heliyon.2024.e25347
Kemenkes. (2018). Laporan Riskesdas 2018 Nasional. Lembaga Penerbit Balitbangkes.
Khodaverdi, K., Naghib, S. M., Mozafari, M. R., & Rahmanian, M. (2025). Chitosan/hydroxyapatite hydrogels for localized drug delivery and tissue engineering: A review. Carbohydrate Polymer Technologies and Applications, 9, 100640. https://doi.org/10.1016/j.carpta.2024.100640
Lenz, S., Dubois, N., Geist, J., & Raeder, U. (2020). Phacotus lenticularis content in carbonate sediments and epilimnion in four German hard water lakes. Journal of Limnology, 79(2), 187-197. https://doi.org/10.4081/jlimnol.2020.1945
Mahanani, E. S., Khusnatunnisa, K., & Mutmainnah, M. (2019). Efektivitas inkorporasi platelet rich plasma pada perancah hidrogel CaCO3. Insisiva Dental Journal, 8(2). https://doi.org/10.18196/di.8206
Morgan, E. F., Unnikrisnan, G. U., & Hussein, A. I. (2018). Bone mechanical properties in healthy and diseased states. Annual Review of Biomedical Engineering, 20, 119-143. https://doi.org/10.1146/annurev-bioeng-062117-121139
Muarif, M. F., Yusuf, Y., & Agipa, A. I. (2024). Type-B carbonated hydroxyapatite based on crab shells: A review on synthesis and characterization. Journal of Energy, Material, and Instrumentation Technology, 5(1), 35-42. https://doi.org/10.23960/jemit.v5i1.241
Permatasari, H. A., Sari, M., Aminatun, S., Suciati, T., Dahlan, K., & Yusuf, Y. (2021). Nano-carbonated hydroxyapatite precipitation from abalone shell (Haliotis asinina) waste as the bioceramics candidate for bone tissue engineering. Nanomaterials and Nanotechnology, 11, 184798042110328. https://doi.org/10.1177/18479804211032851
Rachman, T., Rahmadian, R., & Rusjdi, S. R. (2023). Pola penatalaksanaan fraktur femur di RSUP Dr. M. Djamil Padang tahun 2020. Jurnal Ilmu Kesehatan Indonesia, 4(2), 81-87. https://doi.org/10.25077/jikesi.v4i2.624
Ram, U. B., Sujatha, V., Vidhya, S., Jayasree, R., & Mahalaxmi, S. (2023). Oyster shell-derived nano-hydroxyapatite and proanthocyanidin pretreatment on dentinal tubule occlusion and permeability before and after acid challenge: An in vitro study. Journal of Materials Science: Materials in Medicine, 34(4), 17. https://doi.org/10.1007/s10856-023-06724-4
Rathod, C. L., & Yadav, G. (2020). A cross-sectional study of clinico-demographic profile of patients with complex proximal femoral fractures. International Journal of Medical and Biomedical Studies, 4(8), 128-130. https://doi.org/10.32553/ijmbs.v4i8.1445
Rianti, D., Purnamasari, A. E., Putri, R. R., Salsabilla, N. Z., Faradillah, Munadziroh, E., Agustantina, T. H., Meizarini, A., Yuliati, A., & Syahrom, A. (2023). The compressive strength and static biodegradation rate of chitosan-gelatin limestone-based carbonate hydroxyapatite composite scaffold. Dental Journal, 56(3), 160-165. https://doi.org/10.20473/j.djmkg.v56.i3.p160-165
Safarzadeh, M., Ramesh, S., Tan, C. Y., Chandran, H., Ching, Y. C., Noor, A. F. M., Krishnasamy, S., & Teng, W. D. (2020). Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 59(2), 73-80. https://doi.org/10.1016/j.bsecv.2019.08.001
Said, H. A., Noukrati, H., Ben Youcef, H., Bayoussef, A., Oudadesse, H., & Barroug, A. (2021). Mechanical behavior of hydroxyapatite-chitosan composite: Effect of processing parameters. Minerals, 11(2), 213. https://doi.org/10.3390/min11020213
Sari, M., Suciati, T., Dahlan, K., & Yusuf, Y. (2021). Nanostructure of carbonated hydroxyapatite precipitation extracted from pearl shells (Pinctada maxima) by pH treatment. 16(4), 1619-1625.
Sawada, N., & Nakano, T. (2022). Insights into sex-related size and shape dimorphism in Semisulcospira niponica. Journal of Molluscan Studies, 88(2). https://doi.org/10.1093/mollus/eyac013
Sidiqa, A. N., Rahaju, A., Trilarasati, T., & Khoirunnisa, M. (2020). Pengukuran kekerasan karbonat apatit dengan penguat zirkonia sebagai aplikasi implan gigi. Padjadjaran Journal of Dental Researchers and Students, 4(1), 21. https://doi.org/10.24198/pjdrs.v4i1.25710
Song, X., Philpott, M. A., Best, S. M., & Cameron, R. E. (2024). Controlling the architecture of freeze-dried collagen scaffolds with ultrasound-induced nucleation. Polymers, 16(2), 213. https://doi.org/10.3390/polym16020213
Sukegawa, S., Kanno, T., Yamamoto, N., Nakano, K., Takabatake, K., Kawai, H., Nagatsuka, H., & Furuki, Y. (2019). Biomechanical loading comparison between titanium and unsintered hydroxyapatite/poly-L-lactide plate system for fixation of mandibular subcondylar fractures. Materials, 12(9), 1557. https://doi.org/10.3390/ma12091557
Susanto, R. (2021). Potensi pembuatan replika tulang berpori menggunakan template ampas tebu. ChemPublish Journal, 5(2), 116-129. https://doi.org/10.22437/chp.v5i2.10612
Wati, R., & Yusuf, Y. (2019). Effect of sintering temperature on carbonated hydroxyapatite derived from common cockle shells: Composition and crystal characteristics. Key Engineering Materials, 818, 37-43. https://doi.org/10.4028/www.scientific.net/KEM.818.37
Weldeslase, M. G., Benti, N. E., Desta, M. A., & Mekonnen, Y. S. (2023). Maximizing biodiesel production from waste cooking oil with lime-based zinc-doped CaO using response surface methodology. Scientific Reports, 13, 4430. https://doi.org/10.1038/s41598-023-30961-w
Wong, S. K., Yee, M. M. F., Chin, K. Y., & Ima-Nirwana, S. (2023). A review of the application of natural and synthetic scaffolds in bone regeneration. Journal of Functional Biomaterials, 14(5), 286. https://doi.org/10.3390/jfb14050286
Yap, C. K., & Al-Mutairi, K. A. (2021). Ecological-health risk assessments of heavy metals (Cu, Pb, and Zn) in aquatic sediments from the ASEAN-5 emerging developing countries: A review and synthesis. Biology, 11(1), 7. https://doi.org/10.3390/biology11010007
Zhu, Y., Shao, Y., Guan, T., Lin, B., Guo, C., & Pan, T. (2022). Analysis of the stress between implant prostheses with different moduli and surrounding bones. https://doi.org/10.21203/rs.3.rs-1358844/v1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution 4.0 International License.







