Improvement of TiO2 Performance with 10% Cu–TiO2/BiVO4 Heterojunction Composite Using Sonication in Photoelectrochemical Water Splitting

Authors

  • Bunga Nurkhalifah Chemical Engineering Study Program, Singaperbangsa University Karawang, Indonesia, 41361
  • Vera Pangni Fahriani Chemical Engineering Study Program, Singaperbangsa University Karawang, Indonesia, 41361
  • Sarah Dampang Chemical Engineering Study Program, Singaperbangsa University Karawang, Indonesia, 41361
  • Muhammad Fahmi Chemical Engineering Study Program, Singaperbangsa University Karawang, Indonesia, 41361
  • Nurhayati Chemical Engineering Study Program, Singaperbangsa University Karawang, Indonesia, 41361

DOI:

https://doi.org/10.23960/jemit.358

Keywords:

Heterojunction, Photoelectrochemistry, Water splitting

Abstract

The global energy crisis, driven by the depletion of fossil fuels, has accelerated the search for renewable energy solutions, including hydrogen production via solar-driven photoelectrochemical (PEC) systems. A major limitation of PEC is the UV-only activity of semiconductors such as TiO2. This study investigates the performance enhancement of TiO2 through the formation of a Cu-TiO2/BiVO4 heterojunction composite with 10% Cu doping and sonication treatment. Cu doping reduces the band gap and extends light absorption into the visible region, while BiVO4 promotes effective charge separation. SEM-EDS analysis revealed a more uniform particle distribution in the sonicated sample, and UV-Vis DRS confirmed a substantial band gap narrowing from 2.97 eV to 2.02 eV. PEC testing in a 0.5 M NaCl solution showed that the sonicated composite achieved the highest and most stable photovoltage (0.78 V) along with visible hydrogen bubble formation, indicating efficient light-to-hydrogen conversion. These findings demonstrate that sonication plays a crucial role in improving particle dispersion, suppressing agglomeration, and reinforcing the TiO2/BiVO4 heterojunction, highlighting its potential as a self-biased photoanode for sustainable hydrogen production.

Downloads

Download data is not yet available.

References

Anandha Priya, B., Sivakumar, T., & Venkateswari, P. (2022). Construction of MoS2 nanoparticles incorporated TiO2 nanosheets heterojunction photocatalyst for enhanced visible light-driven hydrogen production. Inorganic Chemistry Communications, 136(December 2021), 109118. https://doi.org/10.1016/j.inoche.2021.109118

Asif Javed, H. M., Qureshi, A. A., Mehmood, R., Tahir, M. I., Javed, S., Sarfaraz, M., Javaid, M. Y., Awais, M., & Ali, U. (2021). Hydrogen-treated TiO2 nanoparticles onto FTO glass as a photoanode for dye-sensitized solar cells with remarkably enhanced performance. International Journal of Hydrogen Energy, 46(27), 14311-14321. https://doi.org/10.1016/j.ijhydene.2021.01.184

Chen, S. H., Jiang, Y. S., & Lin, H. Y. (2020). Easy synthesis of BiVO4 for photocatalytic overall water splitting. ACS Omega, 5(15), 8927-8933. https://doi.org/10.1021/acsomega.0c00699

Choi, J., Sudhagar, P., Kim, J. H., Kwon, J., Kim, J., Terashima, C., Fujishima, A., Song, T., & Paik, U. (2017). WO3/W:BiVO4/BiVO4 graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Physical Chemistry Chemical Physics, 19(6), 4648-4655. https://doi.org/10.1039/c6cp08199a

Clark, R. J., & Felsenfeld, G. (1972). Nature New Biology, 240, 226-229. https://doi.org/10.1038/239137a0

Davies, K. R., Allan, M. G., Nagarajan, S., Townsend, R., Dunlop, T., McGettrick, J. D., Asokan, V. S., Ananthraj, S., Watson, T., Godfrey, A. R., Durrant, J. R., Maroto-Valer, M. M., Kuehnel, M. F., & Pitchaimuthu, S. (2023). Solar light-driven simultaneous pharmaceutical pollutant degradation and green hydrogen production using a mesoporous nanoscale WO3/BiVO4 heterostructure photoanode. Journal of Environmental Chemical Engineering, 11(3), 110256. https://doi.org/10.1016/j.jece.2023.110256

Divyapriya, G., Singh, S., Martínez-Huitle, C. A., Scaria, J., Karim, A. V., & Nidheesh, P. V. (2021). Treatment of real wastewater by photoelectrochemical methods: An overview. Chemosphere, 276, 130188. https://doi.org/10.1016/j.chemosphere.2021.130188

Dozzi, M. V., Marzorati, S., Longhi, M., Coduri, M., Artiglia, L., & Selli, E. (2016). Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Applied Catalysis B: Environmental, 186, 157-165. https://doi.org/10.1016/j.apcatb.2016.01.004

Eidsvåg, H., Bentouba, S., Vajeeston, P., Yohi, S., & Velauthapillai, D. (2021). TiO2 as a photocatalyst for water splitting - an experimental and theoretical review. Molecules, 26(6), 1-30. https://doi.org/10.3390/molecules26061687

El-Shazly, A. N., Hegazy, A. H., El Shenawy, E. T., Hamza, M. A., & Allam, N. K. (2021). Novel facet-engineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production. Solar Energy Materials and Solar Cells, 220, 110825. https://doi.org/10.1016/j.solmat.2020.110825

Guan, Y., Liu, Y., Lv, Q., & Wu, J. (2021). Bismuth-based photocatalyst for photocatalytic oxidation of flue gas mercury removal: A review. Journal of Hazardous Materials, 418, 126280. https://doi.org/10.1016/j.jhazmat.2021.126280

Guo, S., Li, X., Li, J., & Wei, B. (2021). Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nature Communications, 12, 1-10. https://doi.org/10.1038/s41467-021-21526-4

Hu, K. E., Li, Y., Zhao, X., Zhao, D., Zhao, W., & Rong, H. (2020). Photocatalytic degradation mechanism of the visible-light responsive BiVO4/TiO2 core-shell heterojunction photocatalyst. Journal of Inorganic and Organometallic Polymers and Materials, 30(3), 775-788. https://doi.org/10.1007/s10904-019-01217-w

Ikreedeegh, R. R., & Tahir, M. (2023). Ternary nanocomposite of NH2-MIL-125(Ti) MOF-modified TiO2 nanotube arrays (TNTs) with GO electron mediator for enhanced photocatalytic conversion of CO2 to solar fuels under visible light. Journal of Alloys and Compounds, 969, 172465. https://doi.org/10.1016/j.jallcom.2023.172465

Jabbari, P., Najafi Chermahini, A., Luque, R., Pineda, A., & Castellón, E. R. (2024). Synthesis of Cu-doped TiO2 modified BiVO4 for photocatalytic oxidative desulfurization (PODS) of a model fuel. Journal of Photochemistry and Photobiology A: Chemistry, 452, 115625. https://doi.org/10.1016/j.jphotochem.2024.115625

Jiang, W., Jiang, Y., Tong, J., Zhang, Q., Li, S., Tong, H., & Xia, L. (2018). Efficient photoelectrochemical water oxidation using a TiO2 nanosphere-decorated BiVO4 heterojunction photoanode. RSC Advances, 8(72), 41439-41444. https://doi.org/10.1039/c8ra09072f

Kamble, G. S., Natarajan, T. S., Patil, S. S., Thomas, M., Chougale, R. K., Sanadi, P. D., Siddharth, U. S., & Ling, Y. C. (2023). BiVO4 as a sustainable and emerging photocatalyst: Synthesis methodologies, engineering properties, and its volatile organic compounds degradation efficiency. Nanomaterials, 13(9). https://doi.org/10.3390/nano13091528

Kawawaki, T., Kataoka, Y., Ozaki, S., Kawachi, M., Hirata, M., & Negishi, Y. (2021). Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chemical Communications, 57(4), 417-440. https://doi.org/10.1039/d0cc06809h

Kunzelmann, V. F., Jiang, C. M., Ihrke, I., Sirotti, E., Rieth, T., Henning, A., Eichhorn, J., & Sharp, I. D. (2022). Solution-based synthesis of wafer-scale epitaxial BiVO4 thin films exhibiting high structural and optoelectronic quality. Journal of Materials Chemistry A, 10(22), 12026-12034. https://doi.org/10.1039/d1ta10732a

La Ode Asmin, & Isa, L. (2020). Synthesis and characterization of structural nanocomposite titanium dioxide copper-doped using the impregnation method. Spektra: Jurnal Fisika Dan Aplikasinya, 5(1), 21-30. https://doi.org/10.21009/spektra.051.03

Lv, Y. R., Liu, C. J., He, R. K., Li, X., & Xu, Y. H. (2019). BiVO4/TiO2 heterojunction with enhanced photocatalytic activities and photoelectrochemistry performances under visible light illumination. Materials Research Bulletin, 117, 35-40. https://doi.org/10.1016/j.materresbull.2019.04.032

Madkhali, N., Prasad, C., Malkappa, K., Choi, H. Y., Govinda, V., Bahadur, I., & Abumousa, R. A. (2023). Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials. Results in Engineering, 17, 100920. https://doi.org/10.1016/j.rineng.2023.100920

Mahdavi, K., Zinatloo-Ajabshir, S., Yousif, Q. A., & Salavati-Niasari, M. (2022). Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple, and rapid sonochemical approach. Ultrasonics Sonochemistry, 82, 105892. https://doi.org/10.1016/j.ultsonch.2021.105892

Makula, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. Journal of Physical Chemistry Letters, 9(23), 6814-6817. https://doi.org/10.1021/acs.jpclett.8b02892

Moretti, E., Cattaruzza, E., Flora, C., Talon, A., Casini, E., & Vomiero, A. (2021). Photocatalytic performance of Cu-doped titania thin films under UV light irradiation. Applied Surface Science, 553, 149535. https://doi.org/10.1016/j.apsusc.2021.149535

Nabgan, W., Nabgan, B., Jalil, A. A., Ikram, M., Hussain, I., Bahari, M. B., Tran, T. V., Alhassan, M., Owgi, A. H. K., Parashuram, L., Nordin, A. H., & Medina, F. (2024). A bibliometric examination and state-of-the-art overview of hydrogen generation from photoelectrochemical water splitting. International Journal of Hydrogen Energy, 52, 358-380. https://doi.org/10.1016/j.ijhydene.2023.05.162

Nankya, R., & Kim, K. N. (2016). Sol-gel synthesis and characterization of Cu-TiO2 nanoparticles with enhanced optical and photocatalytic properties. Journal of Nanoscience and Nanotechnology, 16(11), 11631-11634. https://doi.org/10.1166/jnn.2016.13564

Nguyen, T. D., Nguyen, V. H., Nanda, S., Vo, D. V. N., Nguyen, V. H., Van Tran, T., Nong, L. X., Nguyen, T. T., Bach, L. G., Abdullah, B., Hong, S. S., & Van Nguyen, T. (2020). BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: a review. Environmental Chemistry Letters, 18(6), 1779-1801. https://doi.org/10.1007/s10311-020-01039-0

Resasco, J., Zhang, H., Kornienko, N., Becknell, N., Lee, H., Guo, J., Briseno, A. L., & Yang, P. (2016). TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Central Science, 2(2), 80-88. https://doi.org/10.1021/acscentsci.5b00402

Shankar, V., Dharani, S. P., Ravi, A., & SaravanaVadivu, A. (2023). A concise review: MXene-based photocatalytic and photoelectrochemical water splitting reactions for the production of hydrogen. International Journal of Hydrogen Energy, 48(57), 21654-21673. https://doi.org/10.1016/j.ijhydene.2023.03.031

Shiva Kumar, S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies, 2(3), 442-454. https://doi.org/10.1016/j.mset.2019.03.002

Song, C. (2023). Enhancing photocatalytic degradation of hydrolyzed polyacrylamide in oilfield wastewater using BiVO4/TiO2 heterostructure nano-photocatalyst under visible light irradiation. International Journal of Electrochemical Science, 18(12), 100363. https://doi.org/10.1016/j.ijoes.2023.100363

Tian, L., Li, Z., Xu, X., & Zhang, C. (2021). Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. Journal of Materials Chemistry A, 9(23), 13459-13470. https://doi.org/10.1039/d1ta01108a

Wang, Y., Wang, W., Fu, J., Liang, Y., Yao, L., & Zhu, T. (2021). Integrating the plasmonic sensitizer and electron relay into ZnO/Au/CdS sandwich nanotube array photoanode for efficient solar-to-hydrogen conversion with 3.2% efficiency. Renewable Energy, 168, 647-658. https://doi.org/10.1016/j.renene.2020.12.076

Wu, H., Zhang, L., Du, A., Irani, R., van de Krol, R., Abdi, F. F., & Ng, Y. H. (2022). Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping. Nature Communications, 13, 1-12. https://doi.org/10.1038/s41467-022-33905-6

Xia, L., Sun, Y., Wang, Y., Yao, W., Wu, Q., Min, Y., & Xu, Q. (2024). Three dimensional nickel foam carried sea urchin-like copper-cobalt-cerium cathode for enhanced tetracycline wastewater purification in photocatalytic fuel cell. Journal of Colloid and Interface Science, 653, 1444-1454. https://doi.org/10.1016/j.jcis.2023.10.007

Yang, H., Wang, W., Wu, X., Siddique, M. S., Su, Z., Liu, M., & Yu, W. (2022). Reducing ROS generation and accelerating the photocatalytic degradation rate of PPCPs at neutral pH by doping Fe-N-C to g-C3N4. Applied Catalysis B: Environmental, 301, 120790. https://doi.org/10.1016/j.apcatb.2021.120790

Yun, S., Lee, J., Cho, H., & Kim, J. (2023). Oxy-fuel combustion-based blue hydrogen production with the integration of water electrolysis. Energy Conversion and Management, 291, 117275. https://doi.org/10.1016/j.enconman.2023.117275

Zheng, Z., Ng, Y. H., Tang, Y., Li, Y., Chen, W., Wang, J., Li, X., & Li, L. (2021). Visible-light-driven photoelectrocatalytic activation of chloride by nanoporous MoS2@BiVO4 photoanode for enhanced degradation of bisphenol A. Chemosphere, 263, 128279. https://doi.org/10.1016/j.chemosphere.2020.128279

Downloads

Published

2025-11-16

How to Cite

Bunga Nurkhalifah, Vera Pangni Fahriani, Sarah Dampang, Muhammad Fahmi Hakim, & Siti Nurhayati. (2025). Improvement of TiO2 Performance with 10% Cu–TiO2/BiVO4 Heterojunction Composite Using Sonication in Photoelectrochemical Water Splitting. Journal of Energy, Material, and Instrumentation Technology, 6(4), 209–219. https://doi.org/10.23960/jemit.358