Effect of Layer Deposition and Thermal Treatment on the Structural, Optical, and Electrical Characteristics of Spin-Coated CaTiO3 Thin Films

Authors

  • Darojat Yusron Department of Physics, Faculty of Science, Institut Teknologi Sumatera, Lampung Selatan, 35365
  • Aulia Mustafida Department of Physics, Faculty of Science, Institut Teknologi Sumatera, Lampung Selatan, 35365
  • Rajak Abdul Department of Physics, Faculty of Science, Institut Teknologi Sumatera, Lampung Selatan, 35365
  • Pardede Indra Department of Physics, Faculty of Science, Institut Teknologi Sumatera, Lampung Selatan, 35365

DOI:

https://doi.org/10.23960/jemit.339

Keywords:

optoelectronic, perovskite, spin_coating, thin_films

Abstract

This study investigates the effect of coating repetition and annealing temperature on the structural, optical, and electrical characteristics of calcium titanate (CaTiO3) thin films synthesized via a sol-gel spin coating method. The number of coatings (2, 4, 6, and 8 layers) and annealing temperatures (250 C, 350 C, and 450 C) were varied to optimize the characteristics. X-ray diffraction analysis indicated an improvement in crystallinity with increasing annealing temperature, as evident from the growing diffraction peaks. UV-Vis spectroscopy revealed a decrease in the optical band gap from 3.741 eV to 3.554 eV with increasing coating layers and thermal treatment, suggesting enhanced optical absorption. Current-voltage measurements using a two-point probe method generally showed linear conduction, indicative of ohmic behavior, with one sample exhibiting a mild nonlinear response at higher bias. The results confirm that process parameters significantly influence the functional properties of CaTiO3 thin films. This fundamental study provides a foundation for employing CaTiO3 as a functional layer in perovskite-based photovoltaic devices, paving the way for further device integration and optimization.

Downloads

Download data is not yet available.

References

Abbas, M., Zeng, L., Guo, F., Rauf, M., Yuan, X.-C., & Cai, B. (2020). A critical review on crystal growth techniques for scalable deposition of photovoltaic perovskite thin films. Materials, 13(21), 4851. https://doi.org/10.3390/ma13214851

Ali, R., & Yashima, M. (2005). Space group and crystal structure of the perovskite CaTiO3 from 296 to 1720 K. Journal of Solid State Chemistry, 178(9), 2867–2872. https://doi.org/10.1016/j.jssc.2005.06.027

Aslam, M., Mahmood, T., & Naeem, A. (2021). Organic-inorganic perovskites: A low-cost-efficient photovoltaic material. In Perovskite and piezoelectric materials (pp. 1–?). Peshawar: IntechOpen. https://doi.org/10.5772/intechopen.94104

Callister, W. D. Jr., & Rethwisch, D. G. (2016). Fundamentals of materials science and engineering: An integrated approach (5th ed.). Hoboken, NJ: Wiley.

Fang, B., Li, J., Fu, Y., Zhao, J., Du, M., Kang, H., & Wang, J. (2025). Realizing record high properties in n-type CaTiO3-based thermoelectric materials. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5095394

Hossain, M. F., Faisal, M., & Okada, H. (2017). Device modeling & performance analysis of perovskite solar cells based on similarity with inorganic thin film solar cells structure. In Proceedings of the 2nd International Conference on Electrical, Computer and Telecommunication Engineering (ICECTE) (pp. 1–5). Rajshahi: IEEE.

Huang, A., Lei, L., Zhu, J., Yu, Y., Liu, Y., Yang, S., Bao, S., Cao, X., & Jin, P. (2017). Achieving high current density of perovskite solar cells by modulating the dominated facets of room-temperature DC magnetron sputtered TiO2 electron extraction layer. ACS Applied Materials & Interfaces, 9(3), 2016–2022. https://doi.org/10.1021/acsami.6b14040

Ikeuchi, S., Yoneda, T., Matsuki, Y., Endo, N., Takeshima, Y., Horiuchi, H., Kishimoto, Y., Yamamoto, K., & Fujimoto, K. (2014). Preparation of (K,Na)NbO3–CaTiO3 film by RF magnetron sputtering. In Proceedings of the 2014 IEEE International Ultrasonics Symposium (pp. 1578–1581). IEEE. https://doi.org/10.1109/ULTSYM.2014.0391

Kadish, K. M., & Guilard, R. (2018). Perovskite solar cells: Principle, materials and devices. Hackensack: World Scientific Publishing Co. Pte. Ltd.

Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H., & Park, N.-G. (2020). High-efficiency perovskite solar cells. Chemical Reviews, 120(15), 7867–7918. https://doi.org/10.1021/acs.chemrev.0c00107

Manjunath, K., & Thimmanna, C. G. (2016). Studies on synthesis, characterization and applications of nano CaTiO3 powder. Current Nanomaterials, 1(2), 145–155. https://doi.org/10.2174/2405461501666160805125748

Patni, N., Zulfiqar, R., & Patel, K. (2022). Fundamentals of perovskite solar cells. In K. Ahmad & W. Raza (Eds.), Perovskite materials for energy and environmental applications (pp. 19–?). Newark: John Wiley & Sons.

Portia, S. A. U., Srinivasan, R., Elaiyappillai, E., Johnson, P. M., & Ramamoorthy, K. (2020). Facile synthesis of Eu-doped CaTiO3 and their enhanced supercapacitive performance. Ionics, 26(7), 3543–3554. Berlin: Springer-Verlag. https://doi.org/10.1007/s11581-020-03494-9

Pourasl, H. H., Barenji, R. V., & Khojastehnezhad, V. M. (2023). Solar energy status in the world: A comprehensive review. Energy Reports, 10, 3474–3493. https://doi.org/10.1016/j.egyr.2023.10.022

Sahoo, S. K., Manoharan, B., & Sivakumar, N. (2018). Introduction: Why perovskite and perovskite solar cells? In Perovskite photovoltaics: Basic to advanced concepts and implementation (pp. 1–24). Academic Press: San Diego.

Sato, M., Tu, R., Goto, T., Ueda, K., & Narushima, T. (2007). Hydroxyapatite formation on CaTiO3 film prepared by metal-organic chemical vapor deposition. Materials Transactions, 48(6), 1505–1510. https://doi.org/10.2320/matertrans.MRA2007016

Torimtubun, A. A. A., Augusty, A. C., Maulana, E., & Ernawati, L. (2018). Affordable and sustainable new generation of solar cells: Calcium titanate (CaTiO3)-based perovskite solar cells. E3S Web of Conferences, 67, Article 01010. Paris: EDP Sciences. https://doi.org/10.1051/e3sconf/20186701010

Wang, J., Cheng, L., Li, H., Liu, F., & Shaojun, S. (2019). Structure and microwave dielectric properties of epitaxial 0.7CaTiO3–0.3NdAlO3 dielectric thin films deposited by pulsed laser deposition. Ceramics International, 45(7), 8700–8706. https://doi.org/10.1016/j.ceramint.2019.01.192

Wendari, T. P., Akbar, M. A., Izzati, A. F., Haidar, H., Rizki, A., Zulhadjri, Arief, S., Mufti, N., & Blake, G. R. (2024). Structure, dielectric, and energy storage properties of perovskite CaTiO3 ceramic synthesized using the natural calcium from Pensi shell (Corbicula moltkiana) waste. Journal of Molecular Structure, 1307, Article 137949. https://doi.org/10.1016/j.molstruc.2024.137949

Würfel, P. (2016). Physics of solar cells: From basic principles to advanced concepts (3rd ed.). Weinheim: WILEY-VCH.

Downloads

Published

2025-08-31

How to Cite

Yusron, D., Mustafida, A., Abdul, R., & Indra, P. (2025). Effect of Layer Deposition and Thermal Treatment on the Structural, Optical, and Electrical Characteristics of Spin-Coated CaTiO3 Thin Films. Journal of Energy, Material, and Instrumentation Technology, 6(3), 135–142. https://doi.org/10.23960/jemit.339