The Effect of Biaxial Strain on The Thermoelectric Properties of 2D SiBi
DOI:
https://doi.org/10.23960/jemit.296Keywords:
DFT, SiBi Monolayer, Strain, ThermoelectricAbstract
This study investigates the electronic and thermoelectric properties of two-dimensional silicon bismuth (2D SiBi) using first-principles Density Functional Theory (DFT) calculations. The 2D SiBi monolayer is identified as a semiconductor with an indirect band gap of 0.67 eV. Solving the Boltzmann transport equation reveals outstanding thermoelectric performance, evidenced by high Seebeck coefficients of 1243.79 µV/K (p-type) and 1217.23 µV/K (n-type) at room temperature. Most significantly, the application of a modest -1% biaxial compressive strain induces a substantial enhancement in these values, elevating them to 1361.75 µV/K and 1371.85 µV/K for p-type and n-type carriers, respectively. These results demonstrate that mechanical strain is an effective strategy for tuning and optimizing the thermoelectric efficiency of 2D SiBi, positioning it as a highly promising material for next-generation thermoelectric devices.
Downloads
References
Affandi, Y., Absor, M. A. U., & Abraha, K. (2018). Effect of external electric field on spin-orbit splitting of the two-dimensional tungsten dichalcogenides. Journal of Physics: Conference Series, 1011(1), 012070. https://doi.org/10.1088/1742-6596/1011/1/012070
Affandi, Y., & Absor, M. A. U. (2022). Electric field-induced anisotropic Rashba splitting in two-dimensional tungsten dichalcogenides. Journal of Physics: Condensed Matter, 34(15), 155502. https://doi.org/10.1088/1361-648X/ac476e
Bafekry, A., Shojaei, F., Obeid, M. M., Ghergherehchi, M., Nguyen, C., & Oskouian, M. (2020). Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: First-principles study of tuning the electronic properties. RSC Advances, 10(53), 31894–31900. https://doi.org/10.1039/D0RA05026A
Bartkowiak, M., & Mahan, G. D. (1999). In Proceedings of the 18th International Conference on Thermoelectrics (p. 71). Piscataway, NJ.
Giannozzi, P., et al. (2017). Advanced capabilities for materials modelling with QUANTUM ESPRESSO. Journal of Physics: Condensed Matter, 29, 465901.
Goldsmid, H. J. (2016). Introduction to thermoelectricity (2nd ed.). Springer. https://doi.org/10.1007/978-3-662-49256-7
Hanna, M. Y., Hasdeo, E. H., Suprayoga, E., & Nugraha, A. R. T. (2020). Thermoelectric properties of two-dimensional hydrogenated borophene: A first-principles study. AIP Conference Proceedings, 2256, 5. https://doi.org/10.1063/5.0014610
Huang, S.-Z., Fang, C.-G., Feng, Q.-Y., Wang, B.-Y., Yang, H.-D., Li, B., Xiang, X., Zu, X., & Deng, H.-X. (2023). Strain tunable thermoelectric material: Janus ZrSSe monolayer. Langmuir, 39(7), 2719–2728.
Itskevich, E. S., Kashirskaya, L. M., & Kraidenov, V. F. (1997). Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors, 31(3), 276–278. https://doi.org/10.1134/1.1187126
Jones, W., Regan, K. A., & DiSalvo, F. J. (1998). Thermoelectric properties of the doped Kondo insulator: NdxCe3-x. Physical Review B: Condensed Matter, 58(24), 16057-16063. https://doi.org/10.1103/physrevb.58.16057
Kaur, K., Murali, D., & Nanda, B. R. K. (2019). Stretchable and dynamically stable promising two-dimensional thermoelectric materials: ScP and ScAs. Journal of Materials Chemistry A, 7(20), 12604-12615.
Madsen, G. K. H., & Singh, D. J. (2006). BoltzTraP: A code for calculating band-structure dependent quantities. Computer Physics Communications, 175(1), 67-71. https://doi.org/10.1016/j.cpc.2006.03.007
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896
Patel, A., Singh, D., Sonvane, Y., Thakor, P. B., & Ahuja, R. (2021). Improved thermoelectric performance of monolayer HfS2 by strain engineering. ACS Omega, 6(44), 29820-29829.
Pei, Y., Wang, H., & Snyder, G. J. (2012). Band engineering of thermoelectric materials. Advanced Materials, 24(46), 6125-6135. https://doi.org/10.1002/adma.201202919
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
Sales, B. C., Mandrus, D., & Williams, R. K. (1996). Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 272(5266), 1325-1328. https://doi.org/10.1126/science.272.5266.1325
Singh, D. J., & Pickett, W. E. (1994). Skutterudite antimonides: Quasilinear bands and unusual transport. Physical Review B, 50(15), 11235-11238. https://doi.org/10.1103/physrevb.50.11235
Slack, G. A., & Tsoukala, V. G. (1994). Some properties of semiconducting compounds with high thermal conductivity. Journal of Applied Physics, 76(3), 1665-1671. https://doi.org/10.1063/1.357747
Sologub, V., Shubnikov, M., Itskevich, E., Kashirskaya, L., Parfen'ev, R., & Goletskaya, A. (1980). Change of Bi2Te3 band structure under hydrostatic compression. Soviet Physics JETP, 52(6), 1203.
Somaiya, R. N., Sonvane, Y., & Gupta, S. K. (2020). Exploration of the strain and thermoelectric properties of hexagonal SiX (X = N, P, As, Sb, and Bi) monolayers. Physical Chemistry Chemical Physics, 22, 3990-3998.
Tritt, T. M. (2001). Recent trends in thermoelectric materials research III. Academic Press.
Wang, H., Zhang, X., & Zhao, X. (2019). First-principles investigation of electronic, mechanical, and thermoelectric properties of graphene-like XBi (X = Si, Ge, Sn) monolayers. Physical Chemistry Chemical Physics, 21(34), 18556-18565. https://doi.org/10.1039/C9CP03432E
Wang, K., Xu, J., Xia, Z., & Jia, Y. (2022). Remarkable thermoelectric performance in BaPdS via pudding-mold band structure, band convergence, and ultralow lattice thermal conductivity. Journal of Materials Chemistry A, 10(35), 18693-18702. https://doi.org/10.1039/D2TA04552H
Yang, J., et al. (2016). On the tuning of electrical and thermal transport in thermoelectrics: An integrated theory-experiment perspective. npj Computational Materials, 2, 15015. https://doi.org/10.1038/npjcompumats.2015.15
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution 4.0 International License.







