The Effect of Biaxial Strain on The Thermoelectric Properties of 2D SiBi
DOI:
https://doi.org/10.23960/jemit.v6i2.296Keywords:
DFT, SiBi Monolayer, Strain, ThermoelectricAbstract
By employing Density Functional Theory (DFT) calculations, the electronic and thermoelectric properties of 2D silicon bismuth (SiBi) materials were analyzed. The 2D SiBi structure was identified as a semiconductor with a bandgap of approximately 0.67 eV. Using Boltzmann transport equations for thermoelectric characterization, we determined that 2D SiBi exhibited significant Seebeck coefficients, reaching values of 1243.79 and 1217.23 µV/K for p-type and n-type doping, respectively. Notably, subjecting the material to a biaxial compressive strain of -1% under ambient conditions results in a considerable enhancement in the Seebeck coefficients, reaching 1361.75 and 1371.85 µV/K for p-type and n-type doping, respectively. These observations indicate that the strategic application of mechanical strain provides a practical pathway for improving the thermoelectric efficiency of 2D SiBi, thereby demonstrating its potential for integration into advanced thermoelectric devices.
Downloads
References
Affandi, Y., Absor, M. A. U., & Abraha, K. (2018). Effect of external electric field on spin-orbit splitting of the two-dimensional tungsten dichalcogenides. Journal of Physics: Conference Series, 1011(1), 012070. https://doi.org/10.1088/1742-6596/1011/1/012070
Affandi, Y., & Absor, M. A. U. (2022). Electric field-induced anisotropic Rashba splitting in two-dimensional tungsten dichalcogenides. Journal of Physics: Condensed Matter, 34(15), 155502. https://doi.org/10.1088/1361-648X/ac476e
Bafekry, A., Shojaei, F., Obeid, M. M., Ghergherehchi, M., Nguyen, C., & Oskouian, M. (2020). Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: First-principles study of tuning the electronic properties. RSC Advances, 10(53), 31894–31900. https://doi.org/10.1039/D0RA05026A
Bartkowiak, M., & Mahan, G. D. (1999). In Proceedings of the 18th International Conference on Thermoelectrics (p. 71). Piscataway, NJ.
Giannozzi, P., et al. (2017). Advanced capabilities for materials modelling with QUANTUM ESPRESSO. Journal of Physics: Condensed Matter, 29, 465901.
Goldsmid, H. J. (2016). Introduction to thermoelectricity (2nd ed.). Springer. https://doi.org/10.1007/978-3-662-49256-7
Hanna, M. Y., Hasdeo, E. H., Suprayoga, E., & Nugraha, A. R. T. (2020). Thermoelectric properties of two-dimensional hydrogenated borophene: A first-principles study. AIP Conference Proceedings, 2256, 5. https://doi.org/10.1063/5.0014610
Huang, S.-Z., Fang, C.-G., Feng, Q.-Y., Wang, B.-Y., Yang, H.-D., Li, B., Xiang, X., Zu, X., & Deng, H.-X. (2023). Strain tunable thermoelectric material: Janus ZrSSe monolayer. Langmuir, 39(7), 2719–2728.
Itskevich, E. S., Kashirskaya, L. M., & Kraidenov, V. F. (1997). Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topological electronic transitions under pressure. Semiconductors, 31(3), 276–278. https://doi.org/10.1134/1.1187126
Jones, W., Regan, K. A., & DiSalvo, F. J. (1998). Thermoelectric properties of the doped Kondo insulator: NdxCe3-x. Physical Review B: Condensed Matter, 58(24), 16057-16063. https://doi.org/10.1103/physrevb.58.16057
Kaur, K., Murali, D., & Nanda, B. R. K. (2019). Stretchable and dynamically stable promising two-dimensional thermoelectric materials: ScP and ScAs. Journal of Materials Chemistry A, 7(20), 12604-12615.
Madsen, G. K. H., & Singh, D. J. (2006). BoltzTraP: A code for calculating band-structure dependent quantities. Computer Physics Communications, 175(1), 67-71. https://doi.org/10.1016/j.cpc.2006.03.007
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896
Patel, A., Singh, D., Sonvane, Y., Thakor, P. B., & Ahuja, R. (2021). Improved thermoelectric performance of monolayer HfS2 by strain engineering. ACS Omega, 6(44), 29820-29829.
Pei, Y., Wang, H., & Snyder, G. J. (2012). Band engineering of thermoelectric materials. Advanced Materials, 24(46), 6125-6135. https://doi.org/10.1002/adma.201202919
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
Sales, B. C., Mandrus, D., & Williams, R. K. (1996). Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 272(5266), 1325-1328. https://doi.org/10.1126/science.272.5266.1325
Singh, D. J., & Pickett, W. E. (1994). Skutterudite antimonides: Quasilinear bands and unusual transport. Physical Review B, 50(15), 11235-11238. https://doi.org/10.1103/physrevb.50.11235
Slack, G. A., & Tsoukala, V. G. (1994). Some properties of semiconducting compounds with high thermal conductivity. Journal of Applied Physics, 76(3), 1665-1671. https://doi.org/10.1063/1.357747
Sologub, V., Shubnikov, M., Itskevich, E., Kashirskaya, L., Parfen'ev, R., & Goletskaya, A. (1980). Change of Bi2Te3 band structure under hydrostatic compression. Soviet Physics JETP, 52(6), 1203.
Somaiya, R. N., Sonvane, Y., & Gupta, S. K. (2020). Exploration of the strain and thermoelectric properties of hexagonal SiX (X = N, P, As, Sb, and Bi) monolayers. Physical Chemistry Chemical Physics, 22, 3990-3998.
Tritt, T. M. (2001). Recent trends in thermoelectric materials research III. Academic Press.
Wang, H., Zhang, X., & Zhao, X. (2019). First-principles investigation of electronic, mechanical, and thermoelectric properties of graphene-like XBi (X = Si, Ge, Sn) monolayers. Physical Chemistry Chemical Physics, 21(34), 18556-18565. https://doi.org/10.1039/C9CP03432E
Wang, K., Xu, J., Xia, Z., & Jia, Y. (2022). Remarkable thermoelectric performance in BaPdS via pudding-mold band structure, band convergence, and ultralow lattice thermal conductivity. Journal of Materials Chemistry A, 10(35), 18693-18702. https://doi.org/10.1039/D2TA04552H
Yang, J., et al. (2016). On the tuning of electrical and thermal transport in thermoelectrics: An integrated theory-experiment perspective. npj Computational Materials, 2, 15015. https://doi.org/10.1038/npjcompumats.2015.15
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution 4.0 International License.