LPG Safety Monitoring System Using Artificial Neural Network with Back Propagation Method Based on The Internet of Things (IoT)

Authors

  • Ramadhani Abidin Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Amir Supriyanto Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Arif Surtono Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Sri Wahyu Suciyati Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141

DOI:

https://doi.org/10.23960/jemit.v5i3.176

Keywords:

Backpropagation, Blynk, Internet of Things (IoT), monitoring LPG

Abstract

This study aims to create an Artificial Neural Network (ANN) to determine the results of LPG gas monitoring based on gas leakage levels, smoke levels, fires, and ambient temperatures and apply Internet of Things technology in the monitoring system. Variations in the number of nodes in the hidden layer indicate that the ANN performance will be maximal, with seven nodes in the hidden layer with an accuracy value of 99.63%, a precision of 100%, and a loss function of 0.423%. The microcontroller used is NodeMCU ESP32S, with input from the MQ6 sensor to detect LPG gas leaks, an infrared sensor to detect flames, an MQ-2 sensor to detect smoke, and a DHT-22 sensor to measure the ambient temperature. The resulting system output is a monitoring display using the Blynk platform, fans and Buzzers controlling, and WhatsApp notifications. The system will turn on the fan when the detected LPG level exceeds 250 ppm.

Downloads

Download data is not yet available.

References

Amirah, Intan, I., Salman, & Arifin, S. R. (2021). Sistem Deteksi Dan Pengaman Kebocoran Gas Pada Kompor Bebasis Sms Gateway. PROSIDING SEMINAR ILMIAH SISTEM INFORMASI DAN TEKNOLOGI INFORMASI, X(2), 144–153.

Berliani, D., & Saragih, Y. (2021). Pemanfaatan 4G LTE Dalam Implementasi NodeMCU ESP8266 Pada Sistem Pendeteksi Kebocoran Gas LPG. Journal of Electrical Technology, 1099, 1–6.

Dewi, A. K., Wardhana, A. S., Pratama, A., & Nugraha, W. A. (2021). Alat Deteksi Kebocoran Gas Rumah Tangga Berbasis Internet of Things. Jurnal Hilirisasi Technology Pengabdian Masyarakat, 2(2), 56–65.

Dwitama, A. P., Janardana, I. G. N., & Wijaya, I. wayan A. (2021). Rancang Bangun Prototipe Pemantau Kebocoran Gas Menggunakan Sensor MQ-6 Berbasis NodeMCU 8266. Jurnal SPEKTRUM, 8(1), 9–14.

Guido, S., & Muller, A. C. (2017). Introduction to Machine Learning with Python A Guide for Data Scientists. O’REILLY. Sebastopol.

Hakim, L., & Yonatan, V. (2017). Deteksi Kebocoran gas LPG menggunakan Detektor Arduino dengan. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi, 1(2), 114–121.

Kim, P. (2017). Matlab Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence. Apress. Seoul.

Kurniawan, A. (2021). Beginning Arduino Nano 33 IoT Step-By-Step Internet of Things Projects. Apress. Depok.

Maidoni, I., & Elfizon. (2020). Perancangan Sistem Keamanan Ruangan Akibat Kebocoran Gas Berbasis Internet of Things ( IoT ). Jurnal Teknik Elektro Indonesia, 1(2), 124–128.

Prayitno, W. A., Muttaqin, A., & Syauqy, D. (2017). Sistem Monitoring Suhu, Kelembaban, dan Pengendali Penyiraman Tanaman Hidroponik menggunakan Blynk Android. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(4), 292–297.

Rosebrock, A. (2017). Deep Learning For Computer Vision With Python. PYIMAGESEARCH, New York.

Sumarto. (2017). Sistem Peringatan Dini Deteksi Dan Pemadam Kebakaran Berbasis Raspberry Pi. Skripsi,

Surabaya: Fakultas Teknologi Elektro Institut Teknologi Sepuluh Nopember.

Tagliaferri, L., Morales, M., Birbeck, E., & Wan, A. (2019). Python Machine Learning Projects. DigitalOcean. New York.

Tutorialspoint. (2016). Artificial Intelligence with Python. Tutorials Point.

Weber, R. H., & Weber, R. (2009). Internet of Things Legal Perspectives. Springer. Zurich.

Downloads

Published

2024-08-31