Production of Nanocellulose from Kepok Banana Peel Waste Using Acid Hydrolysis Method
DOI:
https://doi.org/10.23960/jemit.v4i3.174Keywords:
acid hydrolysis, H2SO4, Nanocellulose, banana kepok, celluloseAbstract
Research on the production of nanocellulose from kepok banana peel waste has been carried out using the Acid Hydrolysis method with H2SO4 Sulfuric Acid. This study aims to determine the effect of giving H2SO4 on kepok banana peels and the crystal structure and surface morphology of nanocellulose on kepok banana peels. The production of nanocellulose was carried out in three stages: delignification using 10% NaOH, bleaching using 10% H2O2, and isolation of nanocellulose using H2SO4 with various concentrations of 5, 10, 15, and 20%. This research uses X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) as its characterization. The resulting crystallite size ranges from 3.58 to 4.15 nm, producing a lump-like morphological structure.
Downloads
References
Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A., and Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibers by steam explosion. Carbohydrate Polymers, 81(3), 720–725
Robles, E., Urruzola, I., Labidi, J., & Serrano, L. (2015). Surface-modified nano-cellulose as poly(lactic acid) reinforcement to conform to new composites. Industrial Crops and Products, 71, pp 44-53
Fritz, C., Jeuck, B., Salas, C., Gonzalez, R., Jameel, H & Rojas, O. (2015). "Nanocellulose and proteins: exploiting their interactions for production, immobilization, and synthesis of biocompatible materials" in Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials: Springer, pp. 207-224
Gong, J., Li, J., Xu, J., Xiang, Z., & Mo, L. (2017). Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Advances, 7(53), 33486–33493
Jonoobi, M., Oladi, R., Davoudpour, Y., & Oksman, K. (2015). A review of different preparation methods and properties of nanostructured cellulose from various natural resources and residues. Cellulose 22, 935–969. https://doi.org/10.1007/s10570-015-0551-0
Kennedy, J. F., Philips, G. O., Williams, P. A. (1993). Cellulosic: Pulp, Fiber, and Environmental Aspects. Ellis Horwood Limited
Kim, J. H., Shim, B. S., Kim, H. S., Lee, Y. J., Min, S. K., Jang, D., Abas, Z., & Kim, J. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing - Green Technology. Vol. 2, No. 2, pp. 197–213
Klemm, D. (1998). Regiocontrol in Cellulose Chemistry: Principles and Examples of Etherification and Esterification. ACS Symposium Series, Vol. 688, pp. 19–37
Iavicoli, I., Leso, V., Beezhold, D. H., & Shvedova, A. A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and applied pharmacology, 329, 96–111. https://doi.org/10.1016/j.taap.2017.05.025
Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospects. European Polymer Journal, 59, 302–325
Nishiyama, Y., Sugiyama, J., Chanzy, H., & Langan, P. (2002). Crystal Structure and Hydrogen-Bonding System in Cellulose IB from Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 124(31), 9074–9082
Nishiyama, Y., Sugiyama, J., Chanzy, H., & Langan, P. (2003). Crystal Structure and Hydrogen Bonding System in Cellulose Ia from Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 125(47), 14300–14306
Nugraha, A. B., Nuruddin, A., & Sunendar, B. (2021). Isolation of Carboxylated Nanocellulose from Ambon Lumut Banana Peel Waste by Oxidation Method. Journal of Science and Applicative Technology. Vol. 5, No. 1. Pp 236–244
Sylvia, N., Meriatna, & Haslina. (2015). Kinetika Hidrolisa Kulit Pisang Kepok Menjadi Glukosa Menggunakan Katalis Asam Klorida. Jurnal Teknologi Kimia. Vol. 4, No. 2. PP. 51–65
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties, and nanocomposites. In Chemical Society Reviews, Vol. 40, Issue 7
Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., Glenn, G., Orts, W. J., & Priest, S. H. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83–92
Scherrer, P. (1918). Bestimmung der Grosse und der inneren Structure of von Kolloidteilchen mittels Rontgenstrahlen. Ges. Wiss. Gottingen 26
Segal, L., Creely, J.J., Martin, A.E., & Conrad, C.M. (1959). An Empirical Method For Estimating The Degree of Crystallinity of Native Cellulose Using The X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794
Sucaldito, M. R., & Camacho, D. H. (2018). Characteristics of unique HBr hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film. Carbohydr. Polym., 169, pp. 315–323
Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. In Frontiers in Chemistry, Vol. 8, Issue May
Zain N. F. M., Yusop, S. M., & Ahmad, I. (2014). Preparation and Characterization of Cellulose and Nanocellulose From Pomelo (Citrus grandis) Albedo. J Nutr Food Sci 5:334.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023

This work is licensed under a Creative Commons Attribution 4.0 International License.