Design of Computer Based 12 Lead ECG Using STM32F401 Microcontroller
DOI:
https://doi.org/10.23960/jemit.v3i4.127Keywords:
ECG, STM32F401, USB, CMRR, frequency responseAbstract
The research of designing computer-based 12 lead ECG using STM32F401 microcontroller has been done. ECG is a healthcare device recording heart electrical activity and assesses heart condition. ECG was chosen for health condition check-ups because it is low-cost and can monitor heart conditions in real-time. To get more details about a heart condition, an ECG with more than one lead is required, of which 12 leads are used for diagnostic application. The designed ECG uses a computer to display and record the ECG signal from the human body using a GUI program created with Visual Studio 2019, capable of recording 12 leads simultaneously and using USB to connect to the computer. STM32F401 is used as a digital signal processor to filter the ECG signal to make a good quality and noise-free ECG recording. Specifying the designed 12 lead ECG is a signal gain of 384 times with error less than 5%, 115.05 dB CMRR, and 0.05-200 Hz frequency response suitable for diagnostic application. The ECG was also capable of recording ECG signals from the human body.
Downloads
References
AAMI. (2001). ANSI/AAMI EC11:1991/(R)2001 Diagnostic Electrocardiographic Devices. American National Standard.
D’Mello, P. C., & D’Souza, S. (2012). Design and development of a virtual instrument for bio-signal acquisition and processing using LabVIEW. Int. J. Adv. Res. Electr. Electron. Instrum. Eng, 1(1), 1–9.
Haberman, M. A., & Spinelli, E. M. (2012). A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL. IEEE Transactions on Biomedical Circuits and Systems, 6(6), 614–618. https://doi.org/10.1109/TBCAS.2012.2190733
Hadiyoso, S., Julian, M., Rizal, A., & Aula, S. (2015). Pengembangan Perangkat EKG 12 Lead dan Aplikasi Client-Server untuk Distribusi Data. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 3(2), 91. https://doi.org/10.26760/elkomika.v3i2.91
Hsu, C. C., Lin, B. S., He, K. Y., & Lin, B. S. (2019). Design of a wearable 12-lead noncontact electrocardiogram monitoring system. Sensors (Switzerland), 19(7). https://doi.org/10.3390/s19071509
Li, C. Y., Ye, G. R., & Yang, Q. F. (2014). Design of flight data signal generator system. Applied Mechanics and Materials, 556–562, 5143–5147. https://doi.org/10.4028/www.scientific.net/AMM.556-562.5143
Narvinda, R., Surtono, A., & Amanto. (2017). Analisis Dimensi Fraktal Sinyal Elektrokardiografi. Teori Dan Aplikasi Fisika, 05(01), 71–75.
Nasiqin, I., Surtono, A., & Pauzi, A. (2015). Rancang Bangun Penguat Biopotensial Elektrokardiografi. Teori dan Aplikasi Fisika, 03(02), 188–194.
Pratiwi, M. L. (2017). Modul Spektrum Sinyal Suara dengan Menggunakan ARM Cortex STM32F401. Jurnal Elektro dan Mesin Terapan, 3(1), 20–26. https://doi.org/10.35143/elementer.v3i1.923
Surtono, A., & Pauzi, G. A. (2016). Deteksi Miokard Infark Jantung pada Rekaman Elektrokardiogram Menggunakan Elevasi Segmen ST. Jurnal Teori dan Aplikasi Fisika, 4(1), 119–124.
Xu, J., & Hong, Z. (2020). A 2-Electrode ECG Amplifier with 0 . 5 % Nominal Gain Shift and 0 . 13 % THD in a 530mV pp Input. IEEE Asian Solid-State Circuits Conference, 5–8.
Yang, Y. (2020). Design of Low-Power Low-noise CMOS ECG Amplifier for Smart Wearable Device. Journal of Physics: Conference Series, 1642(1). https://doi.org/10.1088/1742-6596/1642/1/012027
Young, B., & Schmid, J.-J. (2021). The New ISO/IEC Standard for Automated ECG Interpretation. Hearts, 2(3), 410–418. https://doi.org/10.3390/hearts2030032
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022

This work is licensed under a Creative Commons Attribution 4.0 International License.







