Smart Greenhouse Monitoring With Soil Temperature and Humidity Control on Internet of Things (IoT) Based Orchid Plants

Authors

  • Feri Aditya Ridwan Mas Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Sri Wahyu Suciyati Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Gurum Ahmad Pauzi Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141
  • Junaidi Junaidi Department of Physics, University of Lampung, Bandar Lampung, Indonesia, 35141

DOI:

https://doi.org/10.23960/jemit.v3i3.111

Keywords:

Internet of Things (IoT), Wemos D1 R1, DHT-11, Soil Moisture, Thinkspeak

Abstract

Research on monitoring systems with control has been developed with several different inputs and outputs. This research has realized a smart greenhouse monitoring tool with temperature and soil moisture control on orchid plants based on the Internet of Things (IoT). This study aims to create a monitoring tool for temperature, air humidity, soil moisture, and water level. In the system, the microcontroller used is Wemos D1 R1, with inputs in the form of a DHT-11 sensor to measure air temperature and humidity, a soil moisture sensor to measure soil moisture, and an ultrasonic sensor to measure the water level in the containers. The resulting system output is in the form of pump and fan control. Based on the results of sensor testing, the accuracy of the DHT-11 sensor is 99.97%, the error is 0.03%, the soil moisture sensor is 98.63% accurate, the error is 1.37%, and the ultrasonic sensor is 97, 61% with an error of 2.89%. Based on the research results, the system can run well, as shown by Thingspeak, and the website smartgreenhouseanggrek.weebly.com can receive the results of monitoring sensor data using an internet connection. The tool will carry out the process of wateringplants when the soil moisture value read by the sensor is 20% and will stop watering when the sensor reads the soil moisture value reaches >= 50%. In contrast, the air temperature control is done by turning on the fan if the temperature reaches 30° C.

Downloads

Download data is not yet available.

References

Fandani, H. S., Mallomasang, S. N., & Korja, I. N. (2018). Keanekaragaman Jenis Anggrek pada beberapa Penangkaran di Desa Ampera dan Desa Karunia Kecamatan Palolo Kabupaten Sigi. Jurnal Warta Rimba, 6(9), 14–20.

Heriswanto, K. (2009). Berkibarlah Anggrek- Anggrek Indonesia. BBI Dinas Kelautan dan Pertanian Propinsi DKI Jakarta.

Junaidi, & Prabowo, Y. D. (2018). Project Sistem Kendali Elektronik Berbasis Arduino. CV Anugrah Utama Raharja.

Kasutjianingati, K., & Irawan, R. (2013). Media Alternative Perbanyakan In-Vitro Anggrek Bukan (Phalaenopsis amabilis ). Jurnal Agroteknos, 3(3), 184–189.

Kurniawan, D., & Witanti, A. (2021). Prototype of Control and Monitor System with Fuzzy Logic Method for Smart Greenhouse. Indonesian Journal of Information Systems, 3(2), 116.

Najikh, R. A., Ichsan, M. H. H., & Kurniawan, W. (2018). Monitoring kelembaban , suhu , intensitas cahaya pada tanaman anggrek. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer Universitas Brawijaya, 2(11), 4607–4612.

Prakoso, B. A., Goeritno, A., Ibn, U., & Bogor, K. (2017). Prototipe Sistem Pengontrolan Berbasis Mikrokontroler ATMega 32. Prosiding SNTI FTI-USAKTI V-2016, 5, 338–345.

Roidah, I. S. (2014). Pemanfaatan Lahan Dengan Menggunakan Sistem Hidroponik. 1(2), 43–50.

Sahuleka, B., Lim, R., Santoso, P., Studi, P., Elektro, T., Petra, U. K., & Siwalankerto, J. (2018). Sistem Data Logging Sederhana Berbasis Internet Of Things untuk Pemantauan Suhu Tubuh dan Detak Jantung. 11(1), 29–35.

Statistik, B. P. (2019). Produksi Tanaman Florikultura (Hias) (B. P. Statistik (ed.)). BPS RI.

Tando, E. (2019). Review: Pemanfaatan Teknologi Greenhouse Dalam Budidaya Tanaman Hortikultura. Buana Sains, 19(1), 91–102.

Downloads

Published

2022-08-31