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 Accurate honey type authentication is a significant challenge for small-scale 
producers, as conventional methods are often costly and impractical. This study 
aims to design and develop a low-cost honey classification prototype by 
integrating the AS7265X multispectral sensor with Internet of Things (IoT) 
technology and machine learning. Spectral data from 18 channels of various 
Indonesian honey types were acquired using the AS7265X sensor and analyzed 
exploratively using Principal Component Analysis (PCA) and Linear Discriminant 
Analysis (LDA). The data were then normalized and used to train Artificial Neural 
Network (ANN), Random Forest (RF), and Support Vector Machine (SVM) 
classification models. An ESP32-based IoT system was developed for real-time 
monitoring and cloud data storage. The results demonstrate that AS7265X 
spectral data effectively differentiate honey types, with the ANN model achieving 
94.05% accuracy, supported by a responsive IoT system (1–2 seconds) for 
monitoring and centralized storage. This prototype shows potential as a practical, 
rapid, accurate, and efficient honey authentication solution for various 
stakeholders. 
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Learning, Spektroskopi.  

 Autentikasi jenis madu yang akurat merupakan tantangan signifikan bagi 
produsen skala kecil karena metode konvensional umumnya mahal dan kurang 
praktis. Penelitian ini bertujuan merancang dan membangun prototipe klasifikasi 
jenis madu berbiaya rendah dengan mengintegrasikan sensor multispektral 
AS7265X, teknologi Internet of Things (IoT), dan machine learning. Data spektral 
18 kanal dari berbagai jenis madu Indonesia diakuisisi menggunakan sensor 
AS7265X, kemudian dianalisis secara eksploratif menggunakan Principal 
Component Analysis (PCA) dan Linear Discriminant Analysis (LDA). Data 
selanjutnya diproses melalui normalisasi dan digunakan untuk melatih model 
Artificial Neural Network (ANN), Random Forest (RF), dan Support Vector Machine 

(SVM). Sistem IoT berbasis ESP32 dikembangkan untuk pemantauan real-time 
dan penyimpanan data di cloud. Hasil penelitian menunjukkan bahwa data 
spektral AS7265X efektif membedakan jenis madu, dengan model ANN 
mencapai akurasi 94,05%, didukung sistem IoT yang responsif (1–2 detik) untuk 
pemantauan dan penyimpanan terpusat. Prototipe ini berpotensi menjadi solusi 
autentikasi madu yang praktis, cepat, akurat, dan efisien bagi berbagai 
pemangku kepentingan. 

   

1. Introduction 

Honey is a natural product widely valued for its health benefits, nutritional content, and economic importance 

(Suhesti et al., 2023). Its commercial value depends not only on sensory attributes such as flavor and aroma but also 
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on its botanical type, geographical origin, and authenticity (Da Silva et al., 2016; Riswahyuli et al., 2020). However, 
small-scale honey producers often face difficulties in proving that their honey is genuine and in demonstrating its 
type and origin to consumers. This condition creates a gap between market demand for trustworthy honey and the 
limited ability of local producers to verify and communicate product authenticity. 

Conventional laboratory-based techniques such as chromatography and spectroscopy are the most reliable 
methods for identifying honey authenticity and classification (Tsagkaris et al., 2021; Zhang & Abdulla, 2022). 
Nevertheless, these methods require sophisticated instruments, trained personnel, high operational costs, and long 
processing times, making them inaccessible for most honey farmers and impractical for rapid field verification. 

Consequently, the lack of affordable, easy-to-use tools hinders both producers and consumers in ensuring the quality 
of honey. 

Several alternative methods have been explored to achieve faster and more accessible honey type classification. 

Simple approaches, such as colorimetric tests and handheld refractometers, are inexpensive and user-friendly, but 
they provide limited capability in distinguishing honey types (Mohamat et al., 2023). More advanced approaches, 
including electronic nose and electronic tongue systems, have shown good capability in capturing aroma and taste 
fingerprints of honey, yet they often require complex calibration and remain relatively costly (Gonçalves et al., 2023; 

Ihsan et al., 2025; Leon-Medina et al., 2023). Similarly, portable near-infrared (NIR) and fluorescence-based devices 
offer rapid and accurate analysis but are still not widely affordable for small producers (Tsagkaris et al., 2021). These 
approaches highlight the trade-off between accuracy, cost, and practicality, thus necessitating a method that can 
balance these aspects. 

Recent advances in smart sensor technology, particularly multispectral sensors, offer new opportunities to 
overcome the limitations of conventional and existing portable methods. Multispectral sensors can capture material 
responses across multiple wavelengths, producing spectral fingerprints that correlate with chemical composition 
(Nguyen et al., 2020). The AS7265X sensor, with 18 channels spanning the visible (VIS) to near-infrared (NIR) range, 

has been successfully applied for food classification such as olive oil (Noguera et al., 2022), milk (Durgun, 2023), 
tempeh (Syahputra et al., 2025), and coffee (Sagita et al., 2024, 2025). Combined with Internet of Things (IoT) 
technology for real-time monitoring and machine learning for automated data analysis, such systems can provide 
portable, accurate, and user-friendly solutions ((Aira et al., 2022; Habibullah et al., 2020)). However, to date, no 

study has applied this approach specifically for honey type classification, particularly in the context of local 
Indonesian honey. 

Therefore, this study aims to develop a prototype of a portable, low-cost honey classification system that 
integrates the AS7265X multispectral sensor with IoT connectivity and machine learning algorithms. The proposed 

system is expected to provide a rapid, accurate, and affordable tool for identifying and verifying honey types, thus 
empowering small-scale producers, enhancing consumer confidence, and supporting the competitiveness of local 
honey in the market. 

2. Research Methods 

This research was carried out through four main stages, namely: (1) hardware design and fabrication, (2) 
Internet of Things (IoT) architecture development, (3) sample preparation and spectral data acquisition, and (4) data 
pre-processing and machine learning modeling. 

2.1. Instrument Design and Fabrication 

The hardware was designed as an integrated, portable spectral acquisition system, as illustrated in the block 
diagram in Figure 1. At the core of the system is an ESP32 microcontroller, which manages spectral data acquisition, 
signal processing, and wireless connectivity. Spectral measurements are performed using the AMS AS7265x triad 
multispectral sensor, which communicates with the ESP32 via an I²C interface. This sensor can capture light 

intensity across 18 spectral channels spanning wavelengths from 410 to 940 nm (covering the visible to near-infrared 
range), with a full width at half maximum (FWHM) bandwidth of approximately 20 nm per channel. 

 

 

Figure 1. Block diagram of the IoT-based honey classification system using AS7265X multispectral sensor and ESP32 
microcontroller. 

 

To support direct user interaction, the system features a 3.2-inch TFT LCD touchscreen, enabling intuitive 
control of the measurement process and immediate visualization of results. All electronic components are housed 
within a custom 3D-printed enclosure, designed to ensure light isolation in the measurement chamber and to protect 
the internal circuitry during field use. 
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The system is powered by a rechargeable 18650 Li-Ion battery, managed by a TP4056 charging module, and 

stabilized by a DC-DC converter to provide a consistent 5 V supply to all electronic components. The complete 
electronic circuit, as depicted in the schematic in Figure 2, is housed within a custom-designed case fabricated using 
3D printing technology. This enclosure not only protects the internal components but also features a light-sealed 
measurement chamber, which minimizes interference from ambient light during spectral data acquisition. The 

detailed technical specifications of the device are presented in Table 1. 
 

 

Figure 2. Electronic circuit schematic of a honey-type classification device. 

In this system, the ILI9341 TFT LCD communicates with the ESP32 using the Serial Peripheral Interface (SPI). 
The Serial Clock (SCK) line is connected to GPIO 18, Master Out Slave In (MOSI) to GPIO 27, and Master In Slave 

Out (MISO) to GPIO 19. The Data/Command (DC) control signal is assigned to GPIO 2, the Chip Select (CS) line to 
GPIO 5, the reset line to the ESP32 EN pin, and the backlight is driven through GPIO 4. The XPT2046 touch controller 
shares the same SPI bus but uses different GPIO assignments: the clock line on GPIO 14, Data Input (DIN/MOSI) on 
GPIO 13, Data Output (DOUT/MISO) on GPIO 12, and Chip Select (CS) on GPIO 27. Meanwhile, the AS7265X 

multispectral sensor operates via the I²C protocol, with the Serial Data (SDA) line connected to GPIO 21 and the 
Serial Clock (SCL) line connected to GPIO 22. 

Table 1. Technical specifications of tools 

Characteristics Specifications 

Sensor AMS AS7265x (Triad) 

Spectral Channel 18 

Wavelength Range 410 nm - 940 nm 

FWHM 20 nm 

Microcontroller ESP32 

Communication I2C, Wi-Fi 

User Interface (UI) 3.2" TFT Touch Screen, Web Dashboard 

Power Source 18650 Li-Ion Battery 

Dimensions 150×110×100 mm 

2.2 IoT System and User Interface 

The IoT architecture is designed to support real-time monitoring, remote data access, and structured data 
management. When a measurement process begins, the ESP32 microcontroller communicates with the AS7265X 

multispectral sensor via an I²C interface to capture spectral intensity values across all 18 channels (410–940 nm). 
Each channel reading is acquired in a calibrated digital format, and the ESP32 then performs preprocessing such as 
averaging multiple readings to reduce noise and normalizing the values to minimize variations caused by ambient 
light conditions. Each data set is provided with a timestamp and device ID to ensure data integrity and traceability. 

The processed data is then serialized into JavaScript Object Notation (JSON) format and sent to a backend server via 
a persistent WebSocket connection, chosen for its low-latency, two-way communication, enabling near-real-time 
updates. On the server side, a Django-based backend receives the incoming JSON data, validates it, and stores it in 
a PostgreSQL database. Each record contains metadata such as sample type, measurement time, sensor ID, and 

processed spectral values, ensuring structured and reliable storage for long-term use. 
The system features two primary user interfaces. The first is a local interface embedded in the device’s 3.2-inch 

LCD touchscreen, which allows users to configure Wi-Fi connectivity, perform screen calibration, and initiate the 
spectral acquisition process. The second is a web-based dashboard accessible via any internet-connected device, 

including smartphones and computers. This dashboard allows users to monitor system status, visualize real-time 
spectral responses, and manage stored data, including exporting datasets for external analysis and documentation 
purposes. 
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(a)       (b)  

Figure 3. UI design of honey type classification tool (a) website dashboard, (b) LCD UI of the tool. 

2.3 Honey Samples and Spectral Data Acquisition 

This study used a diverse sample of native Indonesian honey grouped into three main categories, as detailed in Table 

2. These categories included wild honey from four different regions, farmed honey from three different sources of 
floral nectar, and Stingless bee honey from two different species of stingless bees. 

Table 2. Honey Sample Details 

Main Categories Number of Samples (N) 

Wild Honey 93 

Farmed Honey 93 

Stingless Bee Honey 93 

The data acquisition protocol was standardized to ensure consistency and reproducibility of the results. For 
each measurement, 4 mL of the honey sample was placed in a sterile petri dish. The petri dish was then placed inside 
the device at the optimized distance. Based on preliminary experiments evaluating the effect of distance on signal 

intensity and stability, the optimal measurement distance between the sensor and the sample surface was set at 30 
mm. This distance provides the best balance between sufficient signal strength and high measurement 
reproducibility. 

2.4. Data Processing and Machine Learning Models 

The data analysis and machine learning workflow is illustrated in Figure 4. 

 

 
 

Figure 4. Model development diagram for honey type classification. 
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The data analysis and machine learning workflows were designed to develop robust and reliable classification 

models. 
1. Exploratory Data Analysis.  

Prior to modeling, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were applied 
to the spectral dataset. PCA, an unsupervised technique, was employed to visualize the intrinsic variance 

within the data and to identify potential natural groupings. In contrast, LDA, a supervised method, was 
used to assess the linear separability of the predefined honey classes by maximizing the ratio of between-
class to within-class variance. 

2. Pre-processing and Data Sharing 

The entire dataset was normalized using StandardScaler to rescale all 18 spectral features to a uniform 
range (mean 0, standard deviation 1). Finally, the processed data was divided into a training dataset (70%) 
and a test dataset (30%) using a stratified split to ensure the proportion of each class was maintained in 
both sets. 

3. Training Machine Learning  
Models such as Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machines (SVM) 
were evaluated in this study. Extensive hyperparameter tuning was performed using the GridSearchCV 
method with stratified 5-fold cross-validation on the training dataset to identify the optimal configuration 

of each model. This approach enables the systematic testing of various hyperparameter combinations to 
identify the settings that yield the best performance. The hyperparameter search space and the optimal 
values found for each model are summarized in Table 3. 
 

Table 3. Hyperparameter Search Space of machine learning models. 

Algorithm 
Hyperparamete
r 

Tuning Range / Value 

ANN 

hidden layer size 
(58), (116), (58,10), (116,10), (58,58), (116,58), (58,58,58), 
(116,116,116) 

solver lbfgs, sgd 

activation identity, tanh, relu 

Alpha 0.0001, 0.001, 0.01 

RF 
n_estimators 100, 200, 300, 400, 500 

max_depth None, 10, 20, 30 

SVM 

kernel linear, rbf, poly 

C_Values 0.1, 1, 10, 100, 1000 

Gamma 1, 0.1, 0.01, 0.001 

 
2.5. Model Evaluation 

The performance of each classification model was evaluated using a confusion matrix, which compares 
predicted class labels against the true class labels. From the confusion matrix, several key performance metrics were 

derived, including accuracy, sensitivity (recall), specificity, and the F1-score. Accuracy represents the overall 
proportion of correct predictions across all classes. Sensitivity (or recall) measures the model’s ability to correctly 
identify positive instances, while specificity quantifies its ability to identify negative instances correctly. The F1-score 
provides a harmonic mean of precision and recall, offering a balanced metric that is particularly useful in scenarios 

with class imbalance. These metrics collectively provide a comprehensive assessment of model performance across 
various aspects of classification quality. 

3. Results and Discussions 

3.1 Prototype spectral Multichannel System 

The final prototype is a fully functional, portable device housed in a 3D-printed enclosure with dimensions of 
150 × 110 × 100 mm, as illustrated in Figure 5. It integrates all major components, including the ESP32 

microcontroller, the AS7265X multispectral sensor, and a 3.2-inch LCD touchscreen for user interaction. The system 
is powered by a Li-ion battery, enabling standalone and portable use in the field. The prototype design includes a 
light-tight measurement chamber and a customizable sample platform, ensuring consistency and accuracy in the 
data acquisition process. Functional testing of the integrated system showed fast response times, averaging 1-2 

seconds from the start of the scan until the spectral results are displayed on the web-based IoT dashboard. This 
speed is one of the main advantages over conventional laboratory methods, which generally require hours to days of 
analysis time (Biswas & Chaudhari, 2024; Chotimah et al., 2024).The practical implications of this system are 
considerable. Its ability to provide fast and accurate on-site analysis supports a wide range of stakeholders in the 

honey value chain. Beekeepers, honey collectors, and regulatory agencies can efficiently perform timely quality 
control and classify honey types. This, in turn, enhances consumer trust and elevates the commercial value of local 
honey products. The development aligns with the broader goals of food sensor innovation—namely, delivering rapid, 
portable, cost-effective, and non-destructive analytical tools. 
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Figure 5. Tool with 3D printing packaging, (a) left side view, (b) top view, (c) front view, and (d) right side view. 
 

3.2 Sensor Stability 

To ensure data reliability, the stability of the AS7265X multispectral sensor was evaluated using two 
complementary approaches: (1) temporal monitoring during 30 minutes of continuous operation, and (2) statistical 
analysis of signal consistency based on the Coefficient of Variation (CV) for each spectral channel. 

The temporal stability test results (Figure 6) indicate that the sensor maintains a consistent signal throughout 
the observation period, with no evidence of significant drift. In addition, recorded fluctuations in ambient temperature 
did not exhibit a meaningful correlation with signal variation, suggesting that the device demonstrates strong 
environmental robustness. These results confirm that the sensor is suitable for extended operation in field conditions, 

providing reliable and consistent spectral data for downstream analysis. 

.  

Figure 6. Sensor stability over time. 

The CV analysis, as displayed in Figure 7, shows the variation in signal stability levels across wavelength 
channels. The 410 nm channel exhibits the highest variability (CV ≈ 3.2%), suggesting potential noise at this 
wavelength. In contrast, the 510 nm, 645 nm, 810 nm, and 900 nm channels show excellent signal stability, with 

CV values below 0.001%, indicating a precise and consistent signal. Despite the differences between channels, all CV 
values are still below the acceptable tolerance threshold in spectral measurements (Yang et al., 2020. Thus, these 
results confirm that the AS7265X sensor is overall capable of producing stable and reliable data for use in developing 
robust and accurate machine learning classification models. 
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Figure 7. Coefficient of Variation multispectral sensor. 

3.3  Spectral Characteristics of Honey Samples 

Figure 8 presents the average spectral profiles of the three honey categories: Wild Honey, Farmed Honey, and 
Stingless Bee Honey. Distinct differences are observed, particularly around 460 nm, 510–535 nm, and 610 nm within 
the visible (VIS) spectrum. These variations are likely attributable to differences in the concentration and composition 
of natural pigments such as flavonoids and carotenoids, which influence the color and chemical properties of honey 

(Labsvards et al., 2023). In the near-infrared (NIR) region, especially near 940 nm, additional spectral variations are 
evident. These are associated with overtone vibrations of O–H molecular bonds, primarily arising from water and 
sugar content—the major constituents of honey. This finding is consistent with existing NIR spectroscopy literature, 
where interactions with O–H and C–H bonds are frequently used to assess composition and authenticity (Biswas & 

Chaudhari, 2024).  
Despite the observed mean differences, significant intra-class variability was present, leading to overlap between 

the spectral profiles of different honey types. This complexity indicates that simple threshold-based or rule-based 
classification approaches are inadequate. Therefore, machine learning methods are required to identify and model 

subtle, high-dimensional patterns across the spectrum to enable accurate and reliable honey classification. 
 

 

Figure  8. Average sensor value for each type of honey. 

3.4.  Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 

To visualize the structure of the data and assess the potential for class separation, Principal Component 
Analysis (PCA) and Linear Discriminant Analysis (LDA) were applied to the spectral dataset. These chemometric 

techniques are widely used in sensor-based systems, including electronic nose (e-nose) and spectroscopy 
applications, to reduce dimensionality and reveal underlying data patterns(Biswas & Chaudhari, 2024; Chotimah et 
al., 2024; Ihsan et al., 2025). 

The PCA results (Figure 9) show that the three honey categories—Wild Honey, Farmed Honey, and Stingless 

Bee Honey—form relatively distinct clusters in the space defined by the first two principal components. PC1 and PC2 
together account for over 85% of the total variance, with individual contributions of 73% and 12%, respectively. This 
high variance capture suggests that the major sources of variation in the data may be attributed to differences in 

water content, sugar profile, or other chemical constituents among the honey types. 
The PCA results (Figure 9) show that the three main honey categories-Wild Honey, Farmed Honey, and Stingless 

Bee Honey-form relatively separate groups in the space of the two principal components. The first (PC1) and second 
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(PC2) principal components cumulatively explained more than 85% of the total data variance, with contributions of 
73% and 12%, respectively. This indicates a dominant difference between honey types, which is most likely related 
to differences in water content, sugar composition, or other chemical compounds. This finding is consistent with the 
results of (Mateo et al., 2021), who demonstrated that PCA is effective in classifying honey based on its botanical 

sources. Thus, PCA proved to be a powerful initial method for identifying key patterns and structures in honey 
spectral data, while providing a solid foundation for the next stage of classification using machine learning 
algorithms. 

 

Figure 9. PCA analysis of honey spectral data. 

To improve the separation between classes identified through PCA, the supervised Linear Discriminant Analysis 
(LDA) method was applied to the spectral data. The visualization results in Figure 10 show a much sharper class 
separation, where the two principal components of LDA (LD1 and LD2) cumulatively explain more than 99% of the 

discriminative variance between classes. This shows that LDA successfully optimizes the ratio of between-class to 
within-class variance, resulting in highly informative data projections for classification purposes. 

 

 
Figure 10. LDA analysis on honey spectral data. 

3.5 Performance Classification 

Table 4 presents the optimal parameter values obtained using GridSearchCV for each machine learning model 
in the honey type main category classification. The performance of the three machine learning models was evaluated 

using the test dataset. 

Table 4.  Tuned Hyperparameters for Each Classification Model. 

Model Hyperparameter 

ANN activation: tanh, alpha: 0.01, hidden_layer_sizes: (58), solver: lbfgs 
RF max_depth: None, n_estimators: 300 
SVM C: 10, gamma: 1, kernel: linear 
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The training and evaluation results of the machine learning models are summarized in Table 5. Among the 
models tested, the ANN achieved the highest performance on the test dataset, with an accuracy of 94.05% and an 
F1-score of 93.95%. Both SVM and RF also demonstrated strong classification abilities, yielding accuracies of 
92.86% and 89.29%, respectively. The superior performance of the ANN model in this study is consistent with 
findings from previous work by (Faal et al., 2019), which showed that ANN outperformed SVM in predicting the 

physicochemical properties of honey using electronic nose (e-nose) data. Furthermore, the accuracy obtained by the 
proposed system is highly competitive when compared to similar classification systems for other food products. For 
instance, (Al-Awadhi & Deshmukh, 2023) achieved 96.67% accuracy in detecting adulteration in 10 types of honey 
using Vis-NIR reflectance spectroscopy combined with OSWR-LDA-KNN feature selection method.(Ihsan et al., 2025)  

reported 93% accuracy to distinguish luwak and non-luwak coffee using e-nose with an optimized LDA model with 
polynomial feature extraction. 

Table 5. Model Performance for Honey Type Classification 

Model Metrics Test Data 

ANN Accuracy 94.05% 

 F1-Score 93.95% 

RF Accuracy 89.29% 

 F1-Score 89.00% 

SVM Accuracy 92.86% 

 F1-Score 92.82% 

 
The confusion matrix (Figure 11) revealed that, despite high performance, some misclassifications still occurred 

between Forest Honey and Cattle Honey, indicating an overlap in spectral characteristics between the two. This is a 
common challenge in the analysis of natural products that have high compositional variability. On the other hand, 
all three models accurately identified 100% of the Klanceng Honey samples, indicating that Klanceng Honey has a 
distinct spectral "fingerprint" that is unique from the other two categories. 

It is important to note that achieving this high accuracy depends not only on the quality of the sensor but also 
on the overall data processing flow, especially the pre-processing stage. In this study, normalization using 
StandardScaler was applied to homogenize the scale of the features. The importance of this stage is also emphasized 
by (Al-Awadhi & Deshmukh, 2023), who found that pre-processing using Standard Normal Variate (SNV) was a 

crucial step that significantly improved the accuracy of their model in honey counterfeit detection. This highlights 
that the combination of reliable sensors and meticulous data processing is crucial to success in developing machine 
learning-based classification systems. 

 

 

Figure 11. Confusion matrix of honey type classification results: (a) ANN, (b) RF, and (c) SVM. 

4. Conclusion 

This research successfully developed a low-cost, portable honey classification prototype that utilizes the 
AS7265X multispectral sensor, integrated with machine learning algorithms. Among the evaluated models, the ANN 

demonstrated the highest performance, achieving a classification accuracy of 94.05%. The system is also supported 
by a responsive IoT architecture, with an average response time of 1–2 seconds. The proposed device shows strong 
potential as a practical, fast, accurate, and efficient tool for honey classification, particularly for small-scale 
producers, quality inspectors, and end consumers. Its combination of affordability, portability, and real-time data 

accessibility positions it as a viable alternative to conventional laboratory-based methods. 

5.  Bibliography 

Aira, J., Olivares, T., & Delicado, F. M. (2022). SpectroGLY: A Low-Cost IoT-Based Ecosystem for the Detection of 
Glyphosate Residues in Waters. IEEE Transactions on Instrumentation and Measurement, 71, 1–10. IEEE 

Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2022.3196947 

Al-Awadhi, M., & Deshmukh, R. (2023). Enhancing Honey Adulteration Detection With Optimal Subspace Wavelength 
Reduction in Vis-NIR Reflection Spectroscopy. IEEE Access, 11, 144226–144243. 

https://doi.org/10.1109/ACCESS.2023.3343731 



151 

Muhammad R, Isroni, Wisesa TP, and Syahputra TS, 2025, Development of a Portable Low-Cost Multispectral 

Sensor Integrated with IoT and Machine Learning for Classifying Honey Types, Journal of Energy, Material, and 
Instrumentation Technology Vol. 6 No. 3, 2025 

 

 
 

Biswas, A., & Chaudhari, S. R. (2024). Exploring the role of NIR spectroscopy in quantifying and verifying honey 
authenticity: A review. Food Chemistry, 445, 138712. https://doi.org/10.1016/j.foodchem.2024.138712 

Chotimah, Saifullah, K., Laily, F. N., Puspita, M., Kombo, K. O., Hidayat, S. N., Sulistyani, E. T., Wahyono, & Triyana, 

K. (2024). Electronic nose-based monitoring of vacuum-packaged chicken meat freshness in room and 
refrigerated storage. Journal of Food Measurement and Characterization, 18(10), 8825–8842. 
https://doi.org/10.1007/s11694-024-02847-6 

Da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability 

and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051 

Durgun, Y. (2023). Classification of Starch Adulteration in Milk Using Spectroscopic Data and Machine Learning. 
Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi. https://doi.org/10.29137/umagd.1379171 

Faal, S., Loghavi, M., & Kamgar, S. (2019). Physicochemical properties of Iranian ziziphus honey and emerging 
approach for predicting them using electronic nose. Measurement, 148, 106936. 
https://doi.org/10.1016/j.measurement.2019.106936 

Gonçalves, W. B., Teixeira, W. S. R., Cervantes, E. P., Mioni, M. de S. R., Sampaio, A. N. da C. E., Martins, O. A., 

Gruber, J., & Pereira, J. G. (2023). Application of an Electronic Nose as a New Technology for Rapid 
Detection of Adulteration in Honey. Applied Sciences, 13(8), 4881. https://doi.org/10.3390/app13084881 

Habibullah, M., Mohebian, M. R., Soolanayakanahally, R., & Bahar, A. N. (2020). Low-Cost Multispectral Sensor 
Array for Determining Leaf Nitrogen Status. Nitrogen, 1(1), Article 1. 

https://doi.org/10.3390/nitrogen1010007 

Ihsan, N., Kombo, K. O., Kusuma, F. J., Syahputra, T. S., Puspita, M., Wahyono, & Triyana, K. (2025). Enhancing 
Electronic Nose Performance for Differentiating Civet and Non‐Civet Roasted Bean Coffee Using Polynomial 

Feature Extraction Methods. Flavour and Fragrance Journal, 40(2), 298–307. 
https://doi.org/10.1002/ffj.3826 

Labsvards, K. D., Borisova, A., Kokina, K., Bertins, M., Viksna, A., & Rudovica, V. (2023). Multi-Element Profile 
Characterization in Monofloral Honey. Proceedings, 92(1), Article 1. 

https://doi.org/10.3390/proceedings2023092031 

Leon-Medina, J. X., Acosta-Opayome, D., Fuenmayor, C. A., Zuluaga-Domínguez, C. M., Anaya, M., & Tibaduiza, D. 
A. (2023). Intelligent electronic tongue system for the classification of genuine and false honeys. International 
Journal of Food Properties, 26(1), 327–343. https://doi.org/10.1080/10942912.2022.2161571 

Mateo, F., Tarazona, A., & Mateo, E. M. (2021). Comparative Study of Several Machine Learning Algorithms for 
Classification of Unifloral Honeys. Foods, 10(7), Article 7. https://doi.org/10.3390/foods10071543 

Mohamat, R. N., Noor, N. R. A. M., Yusof, Y. A., Sabri, S., & Zawawi, N. (2023). Differentiation of High-Fructose Corn 

Syrup Adulterated Kelulut Honey Using Physicochemical, Rheological, and Antibacterial Parameters. Foods, 
12(8), 1670. https://doi.org/10.3390/foods12081670 

Nguyen, C.-N., Phan, Q.-T., Tran, N.-T., Fukuzawa, M., Nguyen, P.-L., & Nguyen, C.-N. (2020). Precise Sweetness 

Grading of Mangoes (Mangifera indica L.) Based on Random Forest Technique With Low-Cost Multispectral 
Sensors. IEEE Access, 8, 212371–212382. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3040062 

Noguera, M., Millan, B., Aquino, A., & Andújar, J. M. (2022). Methodology for Olive Fruit Quality Assessment by 
Means of a Low-Cost Multispectral Device. Agronomy, 12(5), Article 5. 

https://doi.org/10.3390/agronomy12050979 

Riswahyuli, Y., Rohman, A., Setyabudi, F. M. C. S., & Raharjo, S. (2020). Characterization of Indonesia wild honey 
and its potential for authentication and origin distinction. Food Research, 4(5), 1670–1680. 

https://doi.org/10.26656/fr.2017.4(5).105 

Sagita, D., Mardjan, S. S., Suparlan, Purwandoko, P. B., & Widodo, S. (2024). Low-cost IoT-based multichannel 
spectral acquisition systems for roasted coffee beans evaluation: Case study of roasting degree classification 
using machine learning. Journal of Food Composition and Analysis, 133, 106478. 

https://doi.org/10.1016/j.jfca.2024.106478 

Sagita, D., Widodo, S., Mardjan, S. S., Purwandoko, P. B., & Suparlan. (2025). Rapid identification of coffee species 
and origin using affordable multi-channel spectral sensor combined with machine learning. Food Research 
International, 211, 116501. https://doi.org/10.1016/j.foodres.2025.116501 

Suhesti, E., Roni, Y., Yanti, R. N., Ningsih, A. T., & Hadinoto. (2023). Kualitas Dan Preferensi Konsumen Terhadap 
Madu Lebah Apis Mellifera L. Dan Apis Dorsata F. Jurnal Penelitian Hasil Hutan, 41(2), Article 2. 
https://doi.org/10.55981/jphh.2023.766 

Syahputra, T. S., Ihsan, N., Kombo, K. O., Faizah, K., Wahyono, Widada, J., & Triyana, K. (2025). Integration of low-
cost multispectral sensors and electronic nose for enhanced fermentation monitoring in tempeh production. 
Journal of Food Measurement and Characterization, 19(5), 3687–3701. https://doi.org/10.1007/s11694-
025-03217-6 

Tsagkaris, A. S., Koulis, G. A., Danezis, G. P., & Martakos, I. (2021). Honey authenticity: Analytical techniques, state 
of the art and challenges. RSC Advances, 11(19), 11273–11294. https://doi.org/10.1039/D1RA00069A 



152 
Muhammad et al., 2025/ J. Energy Mater. Instrument. Technol. Vol. 6 No. 3, 2025 

 

 

 
 

Yang, B., Huang, X., Yan, X., Zhu, X., & Guo, W. (2020). A cost-effective on-site milk analyzer based on multispectral 

sensor. Computers and Electronics in Agriculture, 179, 105823. 
https://doi.org/10.1016/j.compag.2020.105823 

Zhang, G., & Abdulla, W. (2022). On honey authentication and adulterant detection techniques. Food Control, 138, 
108992. https://doi.org/10.1016/j.foodcont.2022.108992 

 


