The Effect of Chitosan Addition on Phase Composition and Detection Sensitivity of Fe3O4/Chitosan Magnetic Label Nanoparticles Based on Giant Magnetoresistance Sensor

Authors

  • Galih Aji Prayoga Department of Physics Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia
  • Yuvita Oktarisa Department of Physics Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia
  • Ganesha Antarnusa Universitas Sultan Ageng Tirtayasa
  • Nur Shabrina Fitriani Department of Physics Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia
  • Refi Meilia Aryani Department of Physics Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia
  • Andri Suherman Department of Physics Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia
  • Yudi Guntara Department of Physics Education, Faculty of Teacher Training and Education, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia

DOI:

https://doi.org/10.23960/jemit.v5i4.282

Keywords:

Magnetoresistance, Fe3O4/chitosan, Magnetic label, co-precipitation, Sensor

Abstract

This study describes how phase composition affects the ability of giant magnetoresistance (GMR) chip-based sensors to detect magnetic labels made of Fe3O4 and Fe3O4/chitosan that were synthesized using the co-precipitation method. X-ray diffraction (XRD) analysis revealed that the synthesized nanoparticles were a mixture of magnetite and maghemite phases. The most intense diffraction peak at 2θ = 35.6° (311) confirmed the presence of the magnetite phase. The addition of chitosan significantly increased the proportion of the maghemite phase from 10% to 25%, with the appearance of an additional peak at 2θ = 33° (221). The modification of Fe3O4 nanoparticles into Fe3O4/chitosan nanocomposites resulted in changes in sensor sensitivity. The GMR sensor successfully detected Fe3O4 and Fe3O4/chitosan magnetic labels within 30 seconds with high sensitivities of 0.746 and 0.761 mV/( g/mL), respectively. The limit of detection (LOD) was also very low at 0.419 and 0.428 g/mL. These findings show that Fe3O4/chitosan nanocomposites integrated GMR chip-based sensors can be a dependable instrument for detecting a variety of biomolecules such as Bovine serum albumin (BSA).

Downloads

Download data is not yet available.

References

Andrade, A. B., Ferreira, N. S., & Valerio, M. E. G. (2017). Particle size effects on structural and optical properties of BaF2 nanoparticles. RSC Advances, 7(43), 26839–26848. https://doi.org/10.1039/c7ra01582h

Antarnusa, G., Elda Swastika, P., & Suharyadi, E. (2018). Wheatstone bridge-giant magnetoresistance (GMR) sensors based on Co/Cu multilayers for bio-detection applications. Journal of Physics: Conference Series, 1011(1), 8–13. https://doi.org/10.1088/1742-6596/1011/1/012061

Antarnusa, G., Esmawan, A., Dwi Jayanti, P., Rizki Fitriani, S., Suherman, A., Kinarya Palupi, E., Umam, R., & Ardimas. (2022). Synthesis of Fe3O4 at different reaction temperatures and investigation of its magnetic properties on giant magnetoresistance (GMR) sensors for bio-detection applications. Journal of Magnetism and Magnetic Materials, 563(September), 169903. https://doi.org/10.1016/j.jmmm.2022.169903

Antarnusa, G., Jayanti, P. D., Denny, Y. R., & Suherman, A. (2022). Utilization of co-precipitation method on synthesis of Fe3O4 / PEG with different concentrations of PEG for biosensor applications Materialia Utilization of co-precipitation method on synthesis of Fe 3 O 4 / PEG with different concentrations of PEG for bi. Materialia, 25(March 2024), 101525. https://doi.org/10.1016/j.mtla.2022.101525

Ardiyanti, H., Mabarroh, N., Wibowo, N. A., Istiqomah, N. I., Tumbelaka, R. M., Ulil Absor, M. A., & Suharyadi, E. (2023). New design of a commercial chip-based GMR sensor with magnetite nanoparticles for biosensing applications. Journal of Science: Advanced Materials and Devices, 8(2), 100556. https://doi.org/10.1016/j.jsamd.2023.100556

Baselt, D. R., Lee, G. U., Natesan, M., Metzger, S. W., Sheehan, P. E., & Colton, R. J. (1998). A biosensor based on magnetoresistance technology1This paper was awarded the Biosensors & Bioelectronics Award for the most original contribution to the Congress.1. Biosensors and Bioelectronics, 13(7–8), 731–739. http://linkinghub.elsevier.com/retrieve/pii/S0956566398000372

Cao, B., Wang, K., Xu, H., Qin, Q., Yang, J., Zheng, W., Jin, Q., & Cui, D. (2020). Development of magnetic sensor technologies for point-of-care testing: Fundamentals, methodologies and applications. Sensors and Actuators, A: Physical, 312, 112130. https://doi.org/10.1016/j.sna.2020.112130

Cuana, R., Panre, A. M., Istiqomah, N. I., Tumbelaka, R. M., Sunaryono, Wicaksono, S. T., & Suharyadi, E. (2022). Green Synthesis of Fe 3 O 4 /Chitosan Nanoparticles Utilizing Moringa Oleifera Extracts and Their Surface Plasmon Resonance Properties . ECS Journal of Solid State Science and Technology, 11(8), 083015. https://doi.org/10.1149/2162-8777/ac8b36

Dizaji, A. N., Yilmaz, M., & Piskin, E. (2016). Silver or gold deposition onto magnetite nanoparticles by using plant extracts as reducing and stabilizing agents. Artificial Cells, Nanomedicine and Biotechnology, 44(4), 1109–1115. https://doi.org/10.3109/21691401.2015.1019672

Ferreira, M., Sousa, J., Pais, A., & Vitorino, C. (2020). The role of magnetic nanoparticles in cancer nanotheranostics. Materials, 13(2), 266.

Ganapathe, L. S., Mohamed, M. A., & Yunus, R. M. (2020). Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry, 6(4), 68.

Garcia, S., Mabarroh, N., Cuana, R., Ardiyanti, H., Istiqomah, N. I., & Suharyadi, E. (2024). Detection of Green-Synthesized Fe3O4/ Chitosan Using Spin Valve GMR Sensor with Wheatstone Bridge Circuit. Materials Science Forum, 1114(March), 9–14. https://doi.org/10.4028/p-7ulydw

Giouroudi, I., & Hristoforou, E. (2018). Perspective: Magnetoresistive sensors for biomedicine. Journal of Applied Physics, 124 (3). https://doi.org/10.1063/1.5027035

Guan, M., Mu, X., Zhang, H., Zhang, Y., Xu, J., Li, Q., Wang, X., Cao, D., & Li, S. (2019). Spindle-like Fe3O4 nanoparticles for improving sensitivity and repeatability of giant magnetoresistance biosensors. Journal of Applied Physics, 126(6). https://doi.org/10.1063/1.5096345

Hutchins, B. M., Platt, M., Hancock, W. O., & Williams, M. E. (2007). Directing transport of CoFe2O4-functionalized microtubules with magnetic fields. Small, 3(1), 126–131. https://doi.org/10.1002/smll.200600410

Karaca, E., Şatir, M., Kazan, S., Açikgöz, M., Öztürk, E., Gürdaʇ, G., & Ulutaş, D. (2015). Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer. Journal of Magnetism and Magnetic Materials, 373, 53–59. https://doi.org/10.1016/j.jmmm.2014.02.016

Koesnarpadi, S., Astuti, W., & Lianasari, I. Y. (2020). Nanoparticles Fe3O4 modified chitosan and its antibacterial applications. AIP Conference Proceedings, 2237(June), 10–15. https://doi.org/10.1063/5.0005693

Majidi, S., Sehrig, F. Z., Farkhani, S. M., & Goloujeh, M. S. (2014). Current methods for synthesis of magnetic nanoparticles Current methods for synthesis of magnetic nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 44 (2)(December 2017). https://doi.org/10.3109/21691401.2014.982802

Panda, J., Saha, S. N., & Nath, T. K. (2014). Room temperature giant positive junction magnetoresistance of NiFe 2O4/n-Si heterojunction for spintronics application. Physica B: Condensed Matter, 448, 184–187. https://doi.org/10.1016/j.physb.2014.04.002

Pourmortazavi, S. M., Sahebi, H., Zandavar, H., & Mirsadeghi, S. (2019). Fabrication of Fe3O4 nanoparticles coated by extracted shrimp peels chitosan as sustainable adsorbents for removal of chromium contaminates from wastewater: The design of experiment. Composites Part B: Engineering, 175(July), 107130. https://doi.org/10.1016/j.compositesb.2019.107130

Wibowo, N. A., Sabarman, H., & Suharyadi, E. (2022). A New Platform of Iron Oxide-Based Nanoparticles Assay Using GMR Chip-Based Sensor With Microcontroller. IEEE Sensors Journal, 22(21), 20093–20101. https://doi.org/10.1109/JSEN.2022.3207213

Wu, K., Su, D., Saha, R., Liu, J., & Wang, J.-P. (2019). Investigating the Effect of Magnetic Dipole-Dipole Interaction on Magnetic Particle Spectroscopy ( MPS ): Implications for Magnetic Nanoparticle- based Bioassays and Magnetic Particle Imaging ( MPI ). Journal of Physics D: Applied Physics, 52 (33), 0–16.

Xu, J., Li, Q., Zong, W., Zhang, Y., & Li, S. (2016). Ultra-wide detectable concentration range of GMR biosensors using Fe3O4 microspheres. Journal of Magnetism and Magnetic Materials, 417, 25–29. https://doi.org/10.1016/j.jmmm.2016.05.059

Yuan, S., Du, Y., & Pong, P. W. T. (2021). A Linear Slope Analyzing Strategy of GMR Sensor Transfer Curve for Static Detection of Magnetic Nanoparticles. IEEE Sensors Journal, 21(21), 23934–23942. https://doi.org/10.1109/JSEN.2021.3110609

Zadvarzi, S. B., Khavarpour, M., Vahdat, S. M., Baghbanian, S. M., & Rad, A. S. (2021). Synthesis of Fe3O4@chitosan@ZIF-8 towards removal of malachite green from aqueous solution: Theoretical and experimental studies. International Journal of Biological Macromolecules, 168, 428–441. https://doi.org/10.1016/j.ijbiomac.2020.12.067

Zhang, Y., Xu, J., Cao, D., Li, Q., Zhao, G., Sun, N. X., & Li, S. (2018). Journal of Magnetism and Magnetic Materials The influence of bias magnetization of nanoparticles on GMR sensor signal and sensitivity for the ultra-low concentration detection. Journal of Magnetism and Magnetic Materials, 453, 132–136. https://doi.org/10.1016/j.jmmm.2018.01.010

Zhang, Y., Xu, J., Li, Q., Cao, D., & Li, S. (2019). The effect of the particle size and magnetic moment of the Fe 3 O 4 superparamagnetic beads on the sensitivity of biodetection. AIP Advances, 9(1). https://doi.org/10.1063/1.5050034

Downloads

Published

2024-11-30