FTIR, XRD, and SEM-EDX Characterization of Synthesized B-Type Carbonated Hydroxyapatite (CHAp) Based on Crab Shells
DOI:
https://doi.org/10.23960/jemit.v5i1.241Keywords:
Type-B CHAp, Crab Shells, PrecipitationAbstract
The synthesis and characterization of B-type CHAp based on mangrove crab shells (Scylla serrata) as a source of calcium using the precipitation method has been successfully carried out. Based on the FTIR results, the substitution of carbonate ion for phosphate, which indicates the formation of B-type CHAp, is characterized by the appearance of absorption at wave numbers (CO32-) 1426 and 875 cm-1, PO43- at wave numbers 965, 619 & 569 cm-1. The XRD results show that diffraction peaks (211), (300), and (202) appear at an angle of 2θ ranging from 31°-34°, and there is a phenomenon of a-axis contraction and c-axis expansion in the HAp lattice structure. The SEM-EDX results show that the Ca/P ratio is 1.72, and the carbonate content is 5.01 wt%. All of these parameters are characteristics of CHAp, so it can be concluded that type-B CHAp has been formed.
Downloads
References
Badan Pusat Statistik. (2021). Statistik Lingkungan Hidup Indonesia 2021 Energi dan Lingkungan (Subdirektorat Statistik Lingkungan Hidup (ed.)). Badan Pusat Statistik.
Bang, L. T., Long, B. D., & Othman, R. (2014). Carbonate Hydroxyapatite and Silicon-Substituted Carbonate Hydroxyapatite: Synthesis, Mechanical Properties, and Solubility Evaluations. The Scientific World Journal, January 2015. https://doi.org/10.1155/2014/969876
Barralet, J. E., Best, S. M., & Bonfield, W. (2000). Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite. 1, 719–724.
Desiati, R. D., Sugiarti, E., & Ramandhany, S. (2018). Analisa Ukuran Partikel Serbuk Komposit NiCrAl dengan Penambahan Reaktif Elemen untuk Aplikasi Lapisan Tahan Panas [Particle Size Analysis of NiCrAl Composite Powders with Reactive Elements Addition for Thermal Barrier Coating Applications]. Metalurgi, 33(1), 27. https://doi.org/10.14203/metalurgi.v33i1.358
Ezekiel, I., Kasim, S. R., Ismail, Y. M. B., & Noor, A. F. M. (2018). Nanoemulsion synthesis of carbonated hydroxyapatite nanopowders: Effect of variant CO32-/PO43- molar ratios on phase, morphology, and bioactivity. Ceramics International, 44(11), 13082–13089. https://doi.org/10.1016/j.ceramint.2018.04.128
Filippov, Y. Y., Klimashina, E. S., Ankudinov, A. B., & Putlayev, V. I. (2011). Carbonate substituted hydroxyapatite (CHA) powder consolidated at 450°C. Journal of Physics: Conference Series, 291(1). https://doi.org/10.1088/1742-6596/291/1/012036
Germaini, M. M., Detsch, R., Grünewald, A., Magnaudeix, A., Lalloue, F., Boccaccini, A. R., & Champion, E. (2017). Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Biomedical Materials (Bristol), 12(3). https://doi.org/10.1088/1748-605X/aa69c3
Gibson, I. R., & Bonfield, W. (2001). Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. April. https://doi.org/10.1002/jbm.10044
Haryati, E., Dahlan, K., Togibasa, O., & Dahlan, K. (2019). Protein and Minerals Analyses of Mangrove Crab Shells (Scylla serrata) from Merauke as a Foundation on Bio-ceramic Components. Journal of Physics: Conference Series, 1204(1). https://doi.org/10.1088/1742-6596/1204/1/012031
Jayasree, R., Madhumathi, K., Rana, D., Ramalingam, M., Nankar, R. P., Doble, M., & Kumar, T. S. S. (2018). Development of Egg Shell Derived Carbonated Apatite Nanocarrier System for Drug Delivery. Journal of Nanoscience and Nanotechnology, 18(4), 2318–2324. https://doi.org/10.1166/jnn.2018.14377
Kadarisman, & Nurhasanah, I. (2020). Berdasarkan Adsorpsi Isoterm Gas Nitrogen Kadarisman dan Iis Nurhasanah. Berkala Fisika, 23(3), 78–82.
Landi, E, Celotti, G., Logroscino, G., & Tampieri, A. (2003). Carbonated hydroxyapatite as bone substitute. 23, 2931–2937. https://doi.org/10.1016/S0955-2219(03)00304-2
Landi, Elena, Tampieri, A., Celotti, G., Vichi, L., & Sandri, M. (2004). Influence of synthesis and sintering parameters on the characteristics of carbonate apatite. Biomaterials, 25(10), 1763–1770. https://doi.org/10.1016/j.biomaterials.2003.08.026
Melinia, L. A., Puspita, E., Naibaho, M., Ramlan, R., & Ginting, M. (2022). Analisa Pasir Besi Alam dari Sungai Musi Sumatera Selatan. Jurnal Penelitian Sains, 24(3), 122. https://doi.org/10.56064/jps.v24i3.716
Pieters, I. Y., Van den Vreken, N. M. F., Declercq, H. A., Cornelissen, M. J., & Verbeeck, R. M. H. (2010). Carbonated apatites obtained by the hydrolysis of monetite: Influence of carbonate content on adhesion and proliferation of MC3T3-E1 osteoblastic cells. Acta Biomaterialia, 6(4), 1561–1568. https://doi.org/10.1016/j.actbio.2009.11.002
Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2013). Introduction - Biomaterials Science: An Evolving, Multidisciplinary Endeavor. In Biomaterials Science: An Introduction to Materials: Third Edition (Third Edit). Elsevier. https://doi.org/10.1016/B978-0-08-087780-8.00153-4
Ratri, A. B. C. (2021). Pemanfaatan Limbah Cangkang Kepiting Sebagai Bahan Penambah Pakan Ternak Berkalsium Tinggi Dalam Tinjauan Moderasi Beragama. Jurnal Pengabdian Masyarakat, 2(1), 101–124.
Ruiz, M. G., Hernández, J., Baños, L., Montes, J. N., & García, M. E. R. (2009). Characterization of Calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. Journal of Materials in Civil Engineering, 21(11), 694–698. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(694)
Rujitanapanich, S., Kumpapan, P., & Wanjanoi, P. (2014). Synthesis of Hydroxyapatite from Oyster Shell via Precipitation. Energy Procedia, 56, 112–117. https://doi.org/10.1016/j.egypro.2014.07.138
Safarzadeh, M., Ramesh, S., Tan, C. Y., Chandran, H., Ching, Y. C., Fauzi, A., Noor, M., Krishnasamy, S., & Teng, W. D. (2019). Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate. Boletín de La Sociedad Española de Cerámica y Vidrio, 1–8. https://doi.org/10.1016/j.bsecv.2019.08.001
Surbakti, A., Oley, M. C., & Prasetyo, E. (2017). Perbandingan antara penggunaan karbonat apatit dan hidroksi apatit pada proses penutupan defek kalvaria dengan menggunakan plasma kaya trombosit. Jurnal Biomedik (JBM), Volume 9, 107–114.
Wati, R., & Yusuf, Y. (2019). Effect of Sintering Temperature on Carbonated Hydroxyapatite Derived from Common Cockle Shells ( Cerastodermaedule ): Composition and Crystal Characteristics. 818, 37–43. https://doi.org/10.4028/www.scientific.net/KEM.818.37
Wong, W. Y., & Noor, A.-F. M. (2016). Synthesis and Sintering-wet Carbonation of Nano-sized Carbonated Hydroxyapatite. Procedia Chemistry, 19, 98–105. https://doi.org/10.1016/j.proche.2016.03.121
Yusuf, Y., Almukarrama, Permatasari, H. A., Januariyasa, I. K., Muarif, M. F., Anggraini, R. M., & Wati, R. (2021). Karbonat Hidroksiapatit dari Bahan Alam: Pengertian, Karakterisasi, dan Aplikasi (Moulidvi (ed.); Issue Oktober). Gadjah Mada University Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2024
This work is licensed under a Creative Commons Attribution 4.0 International License.