Computational Exploration of Intrinsic Rashba Splitting in Janus Si2SbBi Monolayer Using Density Functional Theory
DOI:
https://doi.org/10.23960/jemit.v5i1.239Keywords:
DFT, Electronic Structure, Janus, Rashba Splitting, SpintronicsAbstract
In this paper, we investigate the electronic structure of Janus Si2SbBi monolayer and compare it with the non-polar systems Si2Bi2 and Si2Sb2 monolayer based on Density Functional Theory (DFT) calculation. According to the first-principles calculation, these systems exhibit semiconductor properties with energy gaps are 0.674 eV, 0.28 eV, and 1.13 eV for Janus Si2SbBi, Si2Bi2, and Si2Sb2, respectively. In addition, the intrinsic Rashba splitting is also observed around the Γ Point on conduction band minimum (CBM) in the electronic structure of Si2SbBi monolayer, which is not found in Si2Sb2 and Si2Bi2 monolayer systems. This Rashba splitting phenomenon we analyze by using the perturbation theory based on symmetry group and get the first-order Rashba Parameter α1=1.84 eVÅ , and α1=1.73 eVÅ , for Γ-K and Γ-M direction, respectively. With the strong intrinsic Rashba Splitting, the Janus Si2SbBi monolayer has excellent potential to be the candidate of semiconductor material for spintronics devices.
Downloads
References
Affandi, Y., Absor, M. A. U., & Abraha, K. (2018). Effect of external electric field on spin-orbit splitting of the two-dimensional tungsten dichalcogenides WX2 (X = S, Se). Journal of Physics: Conference Series, 1011(1). https://doi.org/10.1088/1742-6596/1011/1/012070
Affandi, Y., & Ulil Absor, M. A. (2019). Electric field-induced anisotropic Rashba splitting in two dimensional tungsten dichalcogenides WX2 (X: S, Se, Te): A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 114(March), 1–6. https://doi.org/10.1016/j.physe.2019.113611
Anshory, M., & Absor, M. A. U. (2020). Strain-controlled spin-splitting in the persistent spin helix state of two-dimensional SnSe monolayer. Physica E: Low-Dimensional Systems and Nanostructures, 124(May), 114372. https://doi.org/10.1016/j.physe.2020.114372
Babaee Touski, S., & Ghobadi, N. (2021). Structural, electrical, and Rashba properties of monolayer Janus Si2XY (X, Y =P, As, Sb, and Bi). Physical Review B, 103(16). https://doi.org/10.1103/PhysRevB.103.165404
Bandurin, D. A., Tyurnina, A. V., Mishchenko, A., Zolyomi, V., Morozov, S. V., Krishna Kumar, R., Gorbachev, R. V., Kudrynskyi, Z. R., Pezzini, S., Kovalyuk, Z. D., Zeitler, U., Novoselov, K. S., Patenè, A., Eaves, L., Grigorieva, I. V., Fal’ko, V. I., Geim, A. K., & Cao, Y. (2017). Mobility, High Electron Effect, Quantum Hall Response, Anomalous Optical Thin, Atomically InSe. Nature Nanotechnology, 12(3), 1–18.
Bychkov, Y. A., & Rashba, E. I. (1984). Properties of a 2D electron gas with lifted spectral degeneracy. In JETP Letters (Vol. 39, pp. 78–81).
García-Miranda Ferrari, A., Rowley-Neale, S. J., & Banks, C. E. (2021). Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. Analytical and Bioanalytical Chemistry, 413(3), 663–672. https://doi.org/10.1007/s00216-020-03068-8
Hanna, M. Y., Santoso, I., & Ulil Absor, M. A. (2018). The Role of the Oxygen Impurity on the Electronic Properties of Monolayer Graphene: A Density-Functional Study. Journal of Physics: Conference Series, 1011(1). https://doi.org/10.1088/1742-6596/1011/1/012071
Huang, Z.-Q., Xu, M.-L., Macam, G., Hsu, C.-H., & Chuang, F.-C. (2020). Large-gap topological insulators in functionalized ordered double transition metal carbide MXenes. Phys. Rev. B, 102(7), 75306. https://doi.org/10.1103/PhysRevB.102.075306
Jin, W., Yeh, P. C., Zaki, N., Zhang, D., Liou, J. T., Sadowski, J. T., Barinov, A., Yablonskikh, M., Dadap, J. I., Sutter, P., Herman, I. P., & Osgood, R. M. (2015). Substrate interactions with suspended and supported monolayer Mo S2: Angle-resolved photoemission spectroscopy. Physical Review B - Condensed Matter and Materials Physics, 91(12). https://doi.org/10.1103/PhysRevB.91.121409
Lee, H. C., Liu, W. W., Chai, S. P., Mohamed, A. R., Aziz, A., Khe, C. S., Hidayah, N. M. S., & Hashim, U. (2017). Review of the synthesis, transfer, characterization, and growth mechanisms of single and multilayer graphene. RSC Advances, 7(26), 15644–15693. https://doi.org/10.1039/C7RA00392G
Lukmantoro, A., & Absor, M. A. U. (2023). Anisotropic Rashba splitting dominated by out-of-plane spin polarization in two-dimensional Janus XA2Y (A= Si, Sn, Ge; X, Y= Sb, Bi) with surface imperfection. 1–28. http://arxiv.org/abs/2308.06761
Mihai Miron, I., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., & Gambardella, P. (2010). Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Materials, 9(3), 230–234. https://doi.org/10.1038/nmat2613
Morales-Ferreiro, J. O., Diaz-Droguett, D. E., Celentano, D., & Luo, T. (2017). First-Principles Calculations of Thermoelectric Properties of IV–VI Chalcogenides 2D Materials. Frontiers in Mechanical Engineering, 3(December), 1–10. https://doi.org/10.3389/fmech.2017.00015
Nan, J., Guo, X., Xiao, J., Li, X., Chen, W., Wu, W., Liu, H., Wang, Y., Wu, M., & Wang, G. (2021). Nanoengineering of 2D MXene-Based Materials for Energy Storage Applications. Small, 17(9), 1902085. https://doi.org/https://doi.org/10.1002/smll.201902085
Ozaki, T. (2003). Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B, 67(15), 155108. https://doi.org/10.1103/PhysRevB.67.155108
Ozaki, T., & Kino, H. (2004). Numerical atomic basis orbitals from H to Kr. Phys. Rev. B, 69(19), 195113. https://doi.org/10.1103/PhysRevB.69.195113
Ozaki, T., Kino, H., Yu, J., Han, M. J., Kobayashi, N., Ohfuti, M., Ishii, F., Ohwaki, T., Weng, H., & Terakura, K. (2009). OpenMX: Open source package for Material eXplorer. URL: Www. Openmx-Square. Org.
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
Putri, S. A., Suharyadi, E., & Absor, M. A. U. (2021). Polarity effect on the electronic structure of molybdenum dichalcogenides moxy (X, Y = S, Se): A computational study based on density-functional theory. Indonesian Journal of Chemistry, 21(3), 598–608. https://doi.org/10.22146/ijc.57949
Qi, X.-L., Wu, Y.-S., & Zhang, S.-C. (2006). Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Physical Review B, 74(8), 085308. https://doi.org/10.1103/PhysRevB.74.085308
Rezavand, A., Ghobadi, N., & Behnamghader, B. (2022). MSi2PxAsy (M = Mo, W) monolayers. Phys. Rev. B, 106(3), 35417. https://doi.org/10.1103/PhysRevB.106.035417
Sino, P. A. L., Feng, L. Y., Villaos, R. A. B., Cruzado, H. N., Huang, Z. Q., Hsu, C. H., & Chuang, F. C. (2021). Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X, Y = S, Se, or Te). Nanoscale Advances, 3(23), 6608–6616. https://doi.org/10.1039/d1na00334h
Stein, D., Klitzing, K. v., & Weimann, G. (1983). Electron Spin Resonance on GaAs-AlxGa1-xAs Heterostructures. Phys. Rev. Lett., 51(2), 130–133. https://doi.org/10.1103/PhysRevLett.51.130
Theurich, G., & Hill, N. A. (2001). Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials. Phys. Rev. B, 64(7), 73106. https://doi.org/10.1103/PhysRevB.64.073106
Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 43(3), 1993–2006. https://doi.org/10.1103/PhysRevB.43.1993
Vajna, S., Simon, E., Szilva, A., Palotas, K., Ujfalussy, B., & Szunyogh, L. (2012). Higher-order contributions to the Rashba-Bychkov effect with application to the Bi/Ag(111) surface alloy. Physical Review B - Condensed Matter and Materials Physics, 85(7), 1–7. https://doi.org/10.1103/PhysRevB.85.075404
Wang, T., Miao, S., Li, Z., Meng, Y., Lu, Z., Lian, Z., Blei, M., Taniguchi, T., Watanabe, K., Tongay, S., Smirnov, D., & Shi, S.-F. (2020). Giant Valley-Zeeman Splitting from Spin-Singlet and Spin-Triplet Interlayer Excitons in WSe2/MoSe2 Heterostructure. Nano Letters, 20(1), 694–700. https://doi.org/10.1021/acs.nanolett.9b04528
Zhang, K., Feng, Y., Wang, F., Yang, Z., & Wang, J. (2017). Two dimensional hexagonal boron nitride (2D-hBN): synthesis{,} properties and applications. J. Mater. Chem. C, 5(46), 11992–12022. https://doi.org/10.1039/C7TC04300G
Zhang, W., Yin, J., Ding, Y., Jiang, Y., & Zhang, P. (2018). Strain-engineering tunable electron mobility of monolayer IV–V group compounds. Nanoscale, 10(35), 16750–16758. https://doi.org/10.1039/C8NR04186E
Downloads
Published
Issue
Section
License
Copyright (c) 2024
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.