Design and Electrical Characterization of Plant Microbial Fuel Cell (PMFC) Using Eichhornia crassipes by Varying the Electrode Distance and Effect Light of the Sun

Authors

  • Mei Suryani Department of Physics, University of Lampung, Bandar Lampung
  • Gurum Ahmad Pauzi Department of Physics, University of Lampung, Bandar Lampung
  • Junaidi Junaidi Department of Physics, University of Lampung, Bandar Lampung
  • Sri Wahyu Suciyati Department of Physics, University of Lampung, Bandar Lampung

DOI:

https://doi.org/10.23960/jemit.v5i1.159

Keywords:

Electric Power, Electrode Distance, PMFC, Sunlight, Water Hyacinth

Abstract

The Plant Microbial Fuel Cell (PMFC) design using water hyacinth has been successfully created. The PMFC was then treated by varying the distance of the electrode and giving the effect of sunlight. The electrodes used are Cu-Zn pairs where the electrode distance varies, with values of 3, 6, 9, and 12 cm. Furthermore, the data was taken with PMFC conditions placed outside and indoors for 14 days (331 hours). The results showed that PMFC with an electrode distance of 3 cm produced a more excellent value of electrical power than the other electrode distances, which was 0.6786 mW on the second day at the 37th hour or in the afternoon at 13.00 WIB. In general, the electrical characteristics produced by PMFCs, which are affected by sunlight, produce greater electrical power than PMFCs indoors.

Downloads

Download data is not yet available.

References

Hendrawan, M. A. (2020). Pengaruh Jenis Elektroda, Jarak Anoda-Katoda, dan Waktu Pertumbuhan Tanaman Eceng Gondok (Eichhornia Crassipes) Pada Teknologi Plant Microbial Fuel Cell (P-MFC). Skripsi. Universitas Pertamina. Jakarta.

Kadhafi, M. (2020). Studi Potensi Energi Listrik Dari Plant Microbial Fuel Cell (P-Mfc) Dengan Variasi Jenis Elektroda. Skripsi. Universitas Alauddin Makassar. Makassar.

Kamalia, L., Pauzi G. A., & Suciyati S. W., (2018). Analisis Laju Korosi Elektrode Bahan Cu-Zn dengan Metode Sacrificial Anode Pada Sistem Energi Listrik Alternatif Berbasis Air Laut. Jurnal Teori dan Aplikasi Fisika. Vol. 06. No. 02. Hal 249-255.

Mahadevan, A., Gunawardena, D. A., & Fernando, S. (2014). Biochemical and Electrochemical Perspectives of the Anode of a Microbial Fuel Cell. Technology and Application of Microbial Fuel Cells. InTech. https://doi.org/10.5772/58755

Maheswari, Karishma., S. Dr. Sarita., S. Dr. Ashok., V. Dr. Sanjay. (2018). Fuel Cell and Its Applications: A Review. International Journal of Engineering Research & Technology (IJERT). Vol. 7. No. 6. Hal 6–9.

Novelendah, L., Senoaji, H., Sinurat, F., Masykur, A., Musthofa, H., & Istirokhatun, T. (2018). Potensi Listrik Dan Degradasi Fosfat Berteknologi Plant Microbial Fuel Cell Dengan Media Tanaman Eceng Gondok. Vol. 17. Hal 1-6.

Prasad, J., & Tripathi, R. K. (2018). Plant Microbial Fuel Cell Energy Harvesting Boost Converter with/without the Super Capacitor. Majlesi Journal of Mechatronic Systems. Vol. 7. No. 4. Hal 7-13.

Puspitaningrum, M., Izzati, M., & Haryanti, S., (2012). Produksi dan Konsumsi Oksigen Terlarut Oleh Beberapa Tumbuhan Air. Buletin Anatomi dan Fisisologi. No 1. Hal 47-55.

Putranto, A. Wahyu., Y. S. K. Novalia., W. Tiara., N. L. (2018). Pengaruh Pemberian Pupuk Urea Dan Jarak Elektroda Terhadap Tegangan Listrik Plant Microbial Fuel Cell Tanaman Padi (Oryza Sativa). Jurnal Teknologi Pertanian. Vol. 19. No. 1. Hal 43–50.

Rosyadi. F.A., Laily, E.N., Sitoresmi, S., & Yushardi. (2017). Pemanfaatan Alga Hijau Sebagai Biokatoda Pada PMFC (Photosynthetis Microbial Fuel Cell). Jurnal Teknik Kimia. Vo. 12. No. 1. Hal. 4-8.

Tang, J., Liu, T., Yuan, Y., & Zhuang, L. (2014). Effective Control of Bioelectricity Generation from a Microbial Fuel Cell by Logical Combinations of pH and Temperature. The Scientific World Journal. Hal. 1–7. https://doi.org/10.1155/2014/186016

Downloads

Published

2024-03-16 — Updated on 2024-03-16

Versions